深度学习中常用的激活函数有sigmoid、tanh、ReLU、LeakyReLU、PReLU、GELU等。

2023-10-19 16:04

本文主要是介绍深度学习中常用的激活函数有sigmoid、tanh、ReLU、LeakyReLU、PReLU、GELU等。,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

深度学习中常用的激活函数

  • 1. Sigmoid函数
  • 2. Tanh函数
  • 3. ReLU函数
  • 4. LeakyReLU函数
  • 5. PReLU函数
  • 6. ELU函数:
  • 7. GELU函数:

深度学习中常用的激活函数有sigmoid、tanh、ReLU、LeakyReLU、PReLU等。

1. Sigmoid函数

Sigmoid函数公式为 f ( x ) = 1 1 + e − x f(x)=\frac{1}{1+e^{-x}} f(x)=1+ex1,它的输出值在[0,1]之间,可以用来解决二元分类问题。它的主要特点是它是可导的,并且输出值可以被解释为概率。但是,如果输入值过大或过小,会导致梯度消失问题,对于较深的神经网络来说不太适用。

PyTorch的代码示例:

import torch.nn.functional as Fclass Net(nn.Module):def __init__(self):super(Net, self).__init__()self.fc1 = nn.Linear(10, 5)self.fc2 = nn.Linear(5, 1)def forward(self, x):x = F.sigmoid(self.fc1(x))x = F.sigmoid(self.fc2(x))return x

2. Tanh函数

Tanh函数公式为 f ( x ) = e x − e − x e x + e − x f(x)=\frac{e^x-e^{-x}}{e^x+e^{-x}} f(x)=ex+exexex,它的输出值在[-1,1]之间,可以用来解决回归问题。与sigmoid不同的是,它的输出是以0为中心的,因此幂次大的输入值仍然会导致梯度消失问题。

PyTorch的代码示例:

import torch.nn.functional as Fclass Net(nn.Module):def __init__(self):super(Net, self).__init__()self.fc1 = nn.Linear(10, 5)self.fc2 = nn.Linear(5, 1)def forward(self, x):x = F.tanh(self.fc1(x))x = F.tanh(self.fc2(x))return x

3. ReLU函数

ReLU函数公式为 f ( x ) = m a x ( 0 , x ) f(x)=max(0, x) f(x)=max(0,x),它的输出值在[0,无穷)之间,可以用来解决分类和回归问题。它有以下优点:1)解决了梯度消失问题;2)计算速度快。

PyTorch的代码示例:

import torch.nn.functional as Fclass Net(nn.Module):def __init__(self):super(Net, self).__init__()self.fc1 = nn.Linear(10, 5)self.fc2 = nn.Linear(5, 1)def forward(self, x):x = F.relu(self.fc1(x))x = F.relu(self.fc2(x))return x

4. LeakyReLU函数

LeakyReLU函数公式为 f ( x ) = m a x ( 0.01 x , x ) f(x)=max(0.01x, x) f(x)=max(0.01x,x),它的输出值在(-无穷,无穷)之间,是ReLU的改进版。在输入值为负数时,它不是完全为0,而是有一个小的斜率,可以避免神经元死亡。

PyTorch的代码示例:

import torch.nn.functional as Fclass Net(nn.Module):def __init__(self):super(Net, self).__init__()self.fc1 = nn.Linear(10, 5)self.fc2 = nn.Linear(5, 1)self.LeakyReLU = nn.LeakyReLU(0.01)def forward(self, x):x = self.LeakyReLU(self.fc1(x))x = self.LeakyReLU(self.fc2(x))return x

5. PReLU函数

PReLU函数公式为:

f ( x ) = { x , if  x > 0 α x , otherwise f(x) = \begin{cases} x, & \text{if $x > 0$}\\ \alpha x, & \text{otherwise} \end{cases} f(x)={x,αx,if x>0otherwise

其中 α \alpha α 是可学习的参数,它的输出值在(-无穷,无穷)之间,是LeakyReLU的改进版。与LeakyReLU不同的是, α \alpha α 不是固定的,而是可以根据训练数据自适应调节。

PyTorch的代码示例:

import torch.nn.functional as Fclass Net(nn.Module):def __init__(self):super(Net, self).__init__()self.fc1 = nn.Linear(10, 5)self.fc2 = nn.Linear(5, 1)self.PReLU = nn.PReLU()def forward(self, x):x = self.PReLU(self.fc1(x))x = self.PReLU(self.fc2(x))return x

6. ELU函数:

ELU函数的数学公式为 f ( x ) = { x , x > 0 α ( e x − 1 ) , x ≤ 0 f(x)=\begin{cases}x, & x>0\\\alpha(e^x-1), & x\leq0\end{cases} f(x)={x,α(ex1),x>0x0,它是另一种解决ReLU“死亡”现象的函数,通过引入一个指数函数来平滑负数区间。

以下是使用PyTorch实现ELU函数的代码示例:

import torch.nn.functional as Fx = torch.randn(2, 3)
y = F.elu(x, alpha=1.0)
print(y)

深度学习中常用的激活函数有sigmoid、ReLU、LeakyReLU、ELU、SeLU等,其中gelu是近年来提出的一种新的激活函数。

7. GELU函数:

GELU (Gaussian Error Linear Units)函数是一种近年来提出的新型激活函数,其原理是基于高斯误差函数的近似。其作用是在保持ReLU函数优点的同时,减少其缺点。将输入的值 x x x通过高斯分布的累积分布函数(CDF) F ( x ) F(x) F(x),来获得激活函数的输出值。其数学表达式如下:

g e l u ( x ) = x ⋅ Φ ( x ) , 其中 Φ ( x ) = 1 2 [ 1 + e r f ( x 2 ) ] \mathrm{gelu}(x)=x\cdot\Phi (x), \ \mathrm{其中}\Phi(x)=\frac{1}{2}[1+\mathrm{erf}(\frac{x}{\sqrt{2}})] gelu(x)=xΦ(x), 其中Φ(x)=21[1+erf(2 x)]
其中, Φ ( x ) \Phi(x) Φ(x)为高斯分布的累积分布函数。

GELU函数具有以下特点:

  • 可微性:GELU函数可导,可以使用反向传播算法训练神经网络。
  • 非线性:与ReLU函数相似,GELU函数具有非线性特点,可以学习非线性函数。
  • 平滑性:GELU函数在整个实数轴上都是连续可导的,可以减少梯度消失和爆炸问题。
  • 计算效率高:由于GELU函数采用了近似求解,计算速度较ReLU函数更快。

由于高斯分布的概率密度函数(PDF)在均值处最大,因此gelu在接近0的地方具有很好的非线性特性,同时也有一定的平滑性,能够一定程度上减少梯度消失问题,提高模型的泛化能力。

PyTorch代码示例:

import torch.nn as nnclass MyModel(nn.Module):def __init__(self):super(MyModel, self).__init__()self.fc = nn.Linear(10, 20)self.act = nn.GELU()def forward(self, x):x = self.fc(x)x = self.act(x)return xmodel = MyModel()
import torch
import torch.nn.functional as Fclass Net(torch.nn.Module):def __init__(self):super(Net, self).__init__()self.fc1 = torch.nn.Linear(10, 20)self.fc2 = torch.nn.Linear(20, 2)def forward(self, x):x = F.gelu(self.fc1(x))x = F.gelu(self.fc2(x))return x

在上述示例代码中,我们使用了PyTorch中的F.gelu函数,实现了GELU激活函数对网络中的每个神经元进行激活。

这篇关于深度学习中常用的激活函数有sigmoid、tanh、ReLU、LeakyReLU、PReLU、GELU等。的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/240873

相关文章

Java 字符数组转字符串的常用方法

《Java字符数组转字符串的常用方法》文章总结了在Java中将字符数组转换为字符串的几种常用方法,包括使用String构造函数、String.valueOf()方法、StringBuilder以及A... 目录1. 使用String构造函数1.1 基本转换方法1.2 注意事项2. 使用String.valu

五大特性引领创新! 深度操作系统 deepin 25 Preview预览版发布

《五大特性引领创新!深度操作系统deepin25Preview预览版发布》今日,深度操作系统正式推出deepin25Preview版本,该版本集成了五大核心特性:磐石系统、全新DDE、Tr... 深度操作系统今日发布了 deepin 25 Preview,新版本囊括五大特性:磐石系统、全新 DDE、Tree

VUE动态绑定class类的三种常用方式及适用场景详解

《VUE动态绑定class类的三种常用方式及适用场景详解》文章介绍了在实际开发中动态绑定class的三种常见情况及其解决方案,包括根据不同的返回值渲染不同的class样式、给模块添加基础样式以及根据设... 目录前言1.动态选择class样式(对象添加:情景一)2.动态添加一个class样式(字符串添加:情

Oracle的to_date()函数详解

《Oracle的to_date()函数详解》Oracle的to_date()函数用于日期格式转换,需要注意Oracle中不区分大小写的MM和mm格式代码,应使用mi代替分钟,此外,Oracle还支持毫... 目录oracle的to_date()函数一.在使用Oracle的to_date函数来做日期转换二.日

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

Java 枚举的常用技巧汇总

《Java枚举的常用技巧汇总》在Java中,枚举类型是一种特殊的数据类型,允许定义一组固定的常量,默认情况下,toString方法返回枚举常量的名称,本文提供了一个完整的代码示例,展示了如何在Jav... 目录一、枚举的基本概念1. 什么是枚举?2. 基本枚举示例3. 枚举的优势二、枚举的高级用法1. 枚举

IDEA常用插件之代码扫描SonarLint详解

《IDEA常用插件之代码扫描SonarLint详解》SonarLint是一款用于代码扫描的插件,可以帮助查找隐藏的bug,下载并安装插件后,右键点击项目并选择“Analyze”、“Analyzewit... 目录SonajavascriptrLint 查找隐藏的bug下载安装插件扫描代码查看结果总结Sona

C++11的函数包装器std::function使用示例

《C++11的函数包装器std::function使用示例》C++11引入的std::function是最常用的函数包装器,它可以存储任何可调用对象并提供统一的调用接口,以下是关于函数包装器的详细讲解... 目录一、std::function 的基本用法1. 基本语法二、如何使用 std::function

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用