Ensemble Learning(Trees, Forests, Bagging, Boosting)

2023-10-18 13:59

本文主要是介绍Ensemble Learning(Trees, Forests, Bagging, Boosting),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.概述

有监督学习任务中,对于一个相对复杂的任务而言,我们的目标是学习出一个稳定且在各个方面表现都较好的模型,但实际情况往往不会如此理想,有时只能得到多个有偏好的模型(弱监督模型或弱可学习weakly learnable模型)。集成学习就是组合这里的多个弱可学习模型得到一个更好更全面的强可学习 strongly learnable模型,集成学习潜在的思想是即便某一个弱学习器得到了错误的预测,其他的弱学习器也可以将错误纠正回来,实现的效果就是将多个“专家”的判断进行适当的综合,要比任何一个“专家”单独的判断好,实际上就是“三个臭皮匠顶个诸葛亮”的道理。

在PAC的学习框架中,强可学习与弱可学习是等价的,也就是一个概念是强可学习的充分条件是这个概念是弱可学习的。

集成学习可用于分类问题集成,回归问题集成,特征选取集成,异常点检测集成(isolated forest)等,可以说所有的单一机器学习模型经过集成都可以形成集成学习模型。本文对各类集成学习做一个比较全面的总结。

2.CART

分类和回归树或CART模型(Classification and regression tree),也称为决策树,通过递归地划分输入空间并在输入空间划分出的每个区域定义一个局部模型。整个模型可以用一棵树表示,每个区域对应一片叶子。

我们首先考虑如下图 a 所示回归树,其中所有输入都是实值。树由一组嵌套决策规则组成。在每个节点 \large i 处,将输入向量

这篇关于Ensemble Learning(Trees, Forests, Bagging, Boosting)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/233041

相关文章

简单的Q-learning|小明的一维世界(3)

简单的Q-learning|小明的一维世界(1) 简单的Q-learning|小明的一维世界(2) 一维的加速度世界 这个世界,小明只能控制自己的加速度,并且只能对加速度进行如下三种操作:增加1、减少1、或者不变。所以行动空间为: { u 1 = − 1 , u 2 = 0 , u 3 = 1 } \{u_1=-1, u_2=0, u_3=1\} {u1​=−1,u2​=0,u3​=1}

简单的Q-learning|小明的一维世界(2)

上篇介绍了小明的一维世界模型 、Q-learning的状态空间、行动空间、奖励函数、Q-table、Q table更新公式、以及从Q值导出策略的公式等。最后给出最简单的一维位置世界的Q-learning例子,从给出其状态空间、行动空间、以及稠密与稀疏两种奖励函数的设置方式。下面将继续深入,GO! 一维的速度世界 这个世界,小明只能控制自己的速度,并且只能对速度进行如下三种操作:增加1、减

Bagging: 数量,而不是质量。

由 AI 生成:过度简化的树、引导聚合、集成方法、弱学习器、减少方差 集成方法 — 数量,而不是质量 一、说明         机器学习中的集成方法是指组合多个模型以提高预测性能的技术。集成方法背后的基本思想是聚合多个基础模型(通常称为弱学习器)的预测,以生成通常比任何单个模型更准确、更稳健的最终预测。一般而言,我们通常遵循质量胜于数量的原则。然而,在这种情况下,事实证

什么是机器学习中的 Bagging?带有示例的指南

文章目录 一、说明二、理解集成学习2.1 什么是 Bagging?2.2 Bagging 与 Boosting2.3 套袋的优点 三、Python 中的 Bagging:简短教程3.1 数据集3.2 训练机器学习模型3.3 模型评估 四、装袋分类器4.1 评估集成模型4.2 最佳实践和技巧 五、结论 ​ 一、说明    集成方法是机器学习中强大的技术,它可以结合多种模型来提高

Learning Memory-guided Normality for Anomaly Detection——学习记忆引导的常态异常检测

又是一篇在自编码器框架中研究使用记忆模块的论文,可以看做19年的iccv的论文的衍生,在我的博客中对19年iccv这篇论文也做了简单介绍。韩国人写的,应该是吧,这名字听起来就像。 摘要abstract 我们解决异常检测的问题,即检测视频序列中的异常事件。基于卷积神经网络的异常检测方法通常利用代理任务(如重建输入视频帧)来学习描述正常情况的模型,而在训练时看不到异常样本,并在测试时使用重建误

Learning Temporal Regularity in Video Sequences——视频序列的时间规则性学习

Learning Temporal Regularity in Video Sequences CVPR2016 无监督视频异常事件检测早期工作 摘要 由于对“有意义”的定义不明确以及场景混乱,因此在较长的视频序列中感知有意义的活动是一个具有挑战性的问题。我们通过在非常有限的监督下使用多种来源学习常规运动模式的生成模型(称为规律性)来解决此问题。体来说,我们提出了两种基于自动编码器的方法,以

COD论文笔记 Adaptive Guidance Learning for Camouflaged Object Detection

论文的主要动机、现有方法的不足、拟解决的问题、主要贡献和创新点如下: 动机: 论文的核心动机是解决伪装目标检测(COD)中的挑战性任务。伪装目标检测旨在识别和分割那些在视觉上与周围环境高度相似的目标,这对于计算机视觉来说是非常困难的任务。尽管深度学习方法在该领域取得了一定进展,但现有方法仍面临有效分离目标和背景的难题,尤其是在伪装目标与背景特征高度相似的情况下。 现有方法的不足之处: 过于

One-Shot Imitation Learning

发表时间:NIPS2017 论文链接:https://readpaper.com/pdf-annotate/note?pdfId=4557560538297540609&noteId=2424799047081637376 作者单位:Berkeley AI Research Lab, Work done while at OpenAI Yan Duan†§ , Marcin Andrychow

Introduction to Deep Learning with PyTorch

1、Introduction to PyTorch, a Deep Learning Library 1.1、Importing PyTorch and related packages import torch# supports:## image data with torchvision## audio data with torchaudio## text data with t

《Learning To Count Everything》CVPR2021

摘要 论文提出了一种新的方法来解决视觉计数问题,即在给定类别中仅有少量标注实例的情况下,对任何类别的对象进行计数。将计数问题视为一个少样本回归任务,并提出了一种新颖的方法,该方法通过查询图像和查询图像中的少量示例对象来预测图像中所有感兴趣对象的存在密度图。此外,还提出了一种新颖的适应策略,使网络能够在测试时仅使用新类别中的少量示例对象来适应任何新的视觉类别。为了支持这一任务,作者还引入了一个包含