Pre-trained Language Models Can be Fully Zero-Shot Learners

2023-10-18 12:36

本文主要是介绍Pre-trained Language Models Can be Fully Zero-Shot Learners,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文是LLM系列文章,针对《Pre-trained Language Models Can be Fully Zero-Shot Learners》的翻译。

预训练语言模型可以是完全零样本的学习者

  • 摘要
  • 1 引言
  • 2 相关工作
  • 3 背景:PLMs基于提示的调整
  • 4 提出的方法:NPPrompt
  • 5 实验
  • 6 讨论
  • 7 结论
  • 局限性

摘要

在没有标记或额外的未标记数据的情况下,我们如何将预先训练的模型扩展到许多语言理解任务?经过预训练的语言模型(PLM)对于广泛的NLP任务是有效的。然而,现有的方法要么需要对下游标记的数据集进行微调,要么需要手动构建适当的提示。在本文中,我们提出了非参数提示PLM(NPPrompt)来完全理解零样本语言。与以前的方法不同,NPPrompt只使用预先训练的语言模型,不需要任何标记数据或额外的原始语料库来进行进一步的微调,也不依赖于人类来构建一组全面的提示标签词。在不同的NLP任务中,我们将NPPrompt与以前的主要小样本和零样本学习方法进行比较:文本分类、文本蕴涵、相似文本检索、转述和多选问题回答。实验结果表明,我们的NPPrompt在很大程度上优于以前最好的完全零样本方法,在文本分类上的准确率和在GLUE基准上的准确度分别提高了12.8%和15.6%。我们的源代码可在https://github.com/Xuandong Zhao/NPPrompt。

1 引言

2 相关工作

3 背景:PLMs基于提示的调整

4 提出的方法:NPPrompt

5 实验

6 讨论

7 结论

在这篇文章中,我们提出了NPPrompt,这是一种新颖而有效的方法,可以通过预先训练的语言模型来实现完全零样本学习。我们使用PLM的初始单词嵌入来自动查找类别名称的相关单词,这使我们能够在没有手动设计或未标记语料库的情况下构建动词化器。实验结果表明,NPPrompt在很大程度上优于以前的零样本方法。

局限性

对于那些没有语义的标签名称,NPPrompt仍然需要几个关键字才能正常工作。此外,本研究仅关注零样本设置。然而,在实际应用中普遍存在的小样本场景中也有潜在的探索途径。NPPrompt是否适用于其他任务,如排名和关系提取,仍不确定,需要进一步调查。设计一种细化方法来联合搜索标签词和模板可能是未来研究的一个很有前途的方向。

这篇关于Pre-trained Language Models Can be Fully Zero-Shot Learners的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/232606

相关文章

uva 10061 How many zero's and how many digits ?(不同进制阶乘末尾几个0)+poj 1401

题意是求在base进制下的 n!的结果有几位数,末尾有几个0。 想起刚开始的时候做的一道10进制下的n阶乘末尾有几个零,以及之前有做过的一道n阶乘的位数。 当时都是在10进制下的。 10进制下的做法是: 1. n阶位数:直接 lg(n!)就是得数的位数。 2. n阶末尾0的个数:由于2 * 5 将会在得数中以0的形式存在,所以计算2或者计算5,由于因子中出现5必然出现2,所以直接一

论文翻译:arxiv-2024 Benchmark Data Contamination of Large Language Models: A Survey

Benchmark Data Contamination of Large Language Models: A Survey https://arxiv.org/abs/2406.04244 大规模语言模型的基准数据污染:一项综述 文章目录 大规模语言模型的基准数据污染:一项综述摘要1 引言 摘要 大规模语言模型(LLMs),如GPT-4、Claude-3和Gemini的快

论文翻译:ICLR-2024 PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS

PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS https://openreview.net/forum?id=KS8mIvetg2 验证测试集污染在黑盒语言模型中 文章目录 验证测试集污染在黑盒语言模型中摘要1 引言 摘要 大型语言模型是在大量互联网数据上训练的,这引发了人们的担忧和猜测,即它们可能已

SAM2POINT:以zero-shot且快速的方式将任何 3D 视频分割为视频

摘要 我们介绍 SAM2POINT,这是一种采用 Segment Anything Model 2 (SAM 2) 进行零样本和快速 3D 分割的初步探索。 SAM2POINT 将任何 3D 数据解释为一系列多向视频,并利用 SAM 2 进行 3D 空间分割,无需进一步训练或 2D-3D 投影。 我们的框架支持各种提示类型,包括 3D 点、框和掩模,并且可以泛化到不同的场景,例如 3D 对象、室

UML- 统一建模语言(Unified Modeling Language)创建项目的序列图及类图

陈科肇 ============= 1.主要模型 在UML系统开发中有三个主要的模型: 功能模型:从用户的角度展示系统的功能,包括用例图。 对象模型:采用对象、属性、操作、关联等概念展示系统的结构和基础,包括类图、对象图、包图。 动态模型:展现系统的内部行为。 包括序列图、活动图、状态图。 因为要创建个人空间项目并不是一个很大的项目,我这里只须关注两种图的创建就可以了,而在开始创建UML图

速通GPT-3:Language Models are Few-Shot Learners全文解读

文章目录 论文实验总览1. 任务设置与测试策略2. 任务类别3. 关键实验结果4. 数据污染与实验局限性5. 总结与贡献 Abstract1. 概括2. 具体分析3. 摘要全文翻译4. 为什么不需要梯度更新或微调⭐ Introduction1. 概括2. 具体分析3. 进一步分析 Approach1. 概括2. 具体分析3. 进一步分析 Results1. 概括2. 具体分析2.1 语言模型

[论文笔记]Making Large Language Models A Better Foundation For Dense Retrieval

引言 今天带来北京智源研究院(BAAI)团队带来的一篇关于如何微调LLM变成密集检索器的论文笔记——Making Large Language Models A Better Foundation For Dense Retrieval。 为了简单,下文中以翻译的口吻记录,比如替换"作者"为"我们"。 密集检索需要学习具有区分性的文本嵌入,以表示查询和文档之间的语义关系。考虑到大语言模

ModuleNotFoundError: No module named ‘diffusers.models.dual_transformer_2d‘解决方法

Python应用运行报错,部分错误信息如下: Traceback (most recent call last): File “\pipelines_ootd\unet_vton_2d_blocks.py”, line 29, in from diffusers.models.dual_transformer_2d import DualTransformer2DModel ModuleNotF

阅读笔记--Guiding Attention in End-to-End Driving Models

作者:Diego Porres1, Yi Xiao1, Gabriel Villalonga1, Alexandre Levy1, Antonio M. L ́ opez1,2 出版时间:arXiv:2405.00242v1 [cs.CV] 30 Apr 2024 这篇论文研究了如何引导基于视觉的端到端自动驾驶模型的注意力,以提高它们的驾驶质量和获得更直观的激活图。 摘 要   介绍

《Zero-Shot Object Counting》CVPR2023

摘要 论文提出了一种新的计数设置,称为零样本对象计数(Zero-Shot Object Counting, ZSC),旨在测试时对任意类别的对象实例进行计数,而只需在测试时提供类别名称。现有的类无关计数方法需要人类标注的示例作为输入,这在许多实际应用中是不切实际的。ZSC方法不依赖于人类标注者,可以自动操作。研究者们提出了一种方法,可以从类别名称开始,准确识别出最佳的图像块(patches),用