基于卡尔曼滤波的质心侧偏角估计

2023-10-17 07:20

本文主要是介绍基于卡尔曼滤波的质心侧偏角估计,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 1、先上汽车理论171页公式。

求导β=v/u得到

 

2、根据以上公式,选取质心侧偏角β和横摆角速度 ω作为状态变量前轮转角δf作为输入量,可以通过方向盘转角获得;选取方便观测的侧向加速度和横摆角速度作为观测量,则状态方程和测量方程为

3.卡尔曼A、B、C、D矩阵求解

 

 则

 

其他参数赋值

4、模型搭建

 

5、carsim与simulink联合仿真

6、由于Simulink function生成代码时,移植性较差,所以我又用simulink搭建了一遍模型。

1、计算先验估计值需要用到的X导数

2、先验估计值和雅可比矩阵

3、先验协方差、增益、后验估计值

4、后验协方差

这篇关于基于卡尔曼滤波的质心侧偏角估计的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/223825

相关文章

数据集 3DPW-开源户外三维人体建模-姿态估计-人体关键点-人体mesh建模 >> DataBall

3DPW 3DPW-开源户外三维人体建模数据集-姿态估计-人体关键点-人体mesh建模 开源户外三维人体数据集 @inproceedings{vonMarcard2018, title = {Recovering Accurate 3D Human Pose in The Wild Using IMUs and a Moving Camera}, author = {von Marc

数据集 Ubody人体smplx三维建模mesh-姿态估计 >> DataBall

Ubody开源人体三维源数据集-smplx-三维建模-姿态估计 UBody:一个连接全身网格恢复和真实生活场景的上半身数据集,旨在拟合全身网格恢复任务与现实场景之间的差距。 UBody包含来自多人的现实场景的1051k张高质量图像,这些图像拥有2D全身关键点、3D SMPLX模型。 UBody由国际数字经济学院(IDEA)提供。 (UBody was used for mesh r

无迹卡尔曼滤波算法(C语言代码)

无迹卡尔曼滤波(Unscented Kalman Filter, UKF)是一种非线性状态估计算法,它通过无迹变换来处理非线性系统,相比扩展卡尔曼滤波(EKF),UKF在处理非线性系统时更具鲁棒性。下面是一个简单的无迹卡尔曼滤波器的C语言实现示例。这个实现展示了如何定义UKF并进行状态估计。 #include <stdio.h>#include <math.h>#include <strin

MATLAB代码|中心差分卡尔曼滤波(CDKF)的滤波例程,无需下载,直接复制到MATLAB上面就能运行

文章目录 CDKF介绍代码运行结果各模块解析初始化系统模型设置CDKF循环绘图 另有关于EKF和CDKF的对比程序:EKF+CDKF两个滤波的MATLAB程序,估计三轴位置,带中文注释—— https://blog.csdn.net/callmeup/article/details/136610153。 CDKF介绍 中心差分卡尔曼滤波(Central Differe

卡尔曼滤波实现一阶马尔可夫形式的滤波|价格滤波|MATLAB代码|无需下载,复制后即可运行

一节马尔可夫 一阶马尔可夫噪声是一种具有马尔可夫性质的随机过程。在这种噪声中,当前时刻的状态只与前一时刻的状态有关,与更早的状态无关。 一阶马尔可夫噪声可以用一个状态转移矩阵表示,矩阵的每个元素表示从一个状态转移到另一个状态的概率。 滤波模型 状态量的迭代模型如下: 观测量为X的第一维,所以观测方程也就是取X的第一维。 运行结果 应用背景为价格滤波,所以对比X真值和滤波值的第一维

Kaggle克隆github项目+文件操作+Kaggle常见操作问题解决方案——一文搞定,以openpose姿态估计项目为例

文章目录 前言一、Kaggle克隆仓库1、克隆项目2、查看目录 二、安装依赖三、文件的上传、复制、转移操作1.上传.pth文件到input目录2、将权重文件从input目录转移到工作目录 三、修改工作目录里的文件内容1、修改demo_camera.py内容 四、运行! 前言 想跑一些深度学习的项目,但是电脑没有显卡,遂看向云服务器Kaggle,这里可以每周免费使用30h的GP

卡尔曼滤波公式通俗理解

本文需要配合博客卡尔曼滤波详解进行理解 1.简单介绍 参考卡尔曼滤波详解 上面可简化理解为 2.主要过程 主要过程还是参考卡尔曼滤波详解 3.实例 这里以线性运动为例 3.1 前期定义状态和变量 3.1.1分析运动情况 已知线性运动上一状态和当前状态的关系,假设没有噪声干扰,为 { x ′ = x + v x Δ t y ′ = y + v y Δ t \begin{

【逐行注释】容积卡尔曼滤波的MATLAB例程(三维CKF),无需下载,可直接复制代码到MATLAB上运行

文章目录 CKF完整源代码与注释程序运行结果绘图部分误差的统计特性计算与输出部分 CKF CKF全称为容积卡尔曼滤波,相比于UKF(无迹卡尔曼滤波),拥有更合理的理论推导和鲁棒性,且在理论上比UKF的精度更高。 另有: 与EKF的对比程序:https://blog.csdn.net/callmeup/article/details/136147833 完整源代码与注释

【译】PCL官网教程翻译(18):估计一组点的视点特征直方图(VFH)签名 - Estimating VFH signatures for a set of points

英文原文查看 估计一组点的视点特征直方图(VFH)签名 本文描述了视点特征直方图([VFH])描述符,这是一种针对聚类(如对象)识别和6DOF姿态估计问题的点簇表示方法。 下图展示了一个VFH识别和姿态估计的例子。给定一组火车数据(除最左边的点云外,最上面一行、最下面一行),学习一个模型,然后使用一个云(最左边的部分)查询/测试模型。匹配的结果按从最好到最差的顺序从左到右从左下角开始。有关更多

分歧时间估计与被子植物的年代-文献精读43

Ad fontes: divergence-time estimation and the age of angiosperms 回归本源:分歧时间估计与被子植物的年代 摘要 准确的分歧时间对于解释和理解谱系演化的背景至关重要。在过去的几十年里,有关冠被子植物推测的分子年龄(通常估计为晚侏罗世至二叠纪)与化石记录(将被子植物置于早白垩纪)之间的差异,引发了广泛的争论。如果冠被子植物早在二