图说微积分(六)泰勒级数

2023-10-16 19:50
文章标签 微积分 级数 泰勒 图说

本文主要是介绍图说微积分(六)泰勒级数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


教授一上来就说:任何有理的函数他们都能写成下面的多项式累加的形式,这样的形式表示的是函数在x=0这点的泰勒级数展开,表示的是在x=0周围,函数与这些多项式的组合的函数值很接近。也可以称作麦克劳级数

从下图我们可以发现,当函数e^x展开的次数越来越多时,多项式在x=0旁边的图像越来越逼近指数函数。

这篇关于图说微积分(六)泰勒级数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/220413

相关文章

微积分-积分应用5.4(功)

术语“功”在日常语言中用来表示完成一项任务所需的总努力量。在物理学中,它有一个依赖于“力”概念的技术含义。直观上,你可以将力理解为对物体的推或拉——例如,一个书本在桌面上的水平推动,或者地球对球的向下拉力。一般来说,如果一个物体沿着一条直线运动,位置函数为 s ( t ) s(t) s(t),那么物体上的力 F F F(与运动方向相同)由牛顿第二运动定律给出,等于物体的质量 m m m 与其

微积分直觉:隐含微分

目录 一、介绍 二、梯子问题 三、结论 四、一个额外的例子 一、介绍         让我们想象一个半径为 5 的圆,以 xy 平面为中心。现在假设我们想在点 (3,4) 处找到一条切线到圆的斜率。         好吧,为了做到这一点,我们必须非常接近圆和切线之间的空间,并沿着该曲线迈出一小步。该步骤的 y 分量为 dy,x 分量为

【Get深一度】信号处理(二)——傅里叶变换与傅里叶级数的区别与联系

1.傅里叶级数和傅里叶变换:  傅里叶级数对周期性现象做数学上的分析 傅里叶变换可以看作傅里叶级数的极限形式,也可以看作是对周期现象进行数学上的分析。 除此之外,傅里叶变换还是处理信号领域的一种很重要的算法。要想理解傅里叶变换算法的内涵,首先要了解傅里叶原理的内涵。 傅里叶原理表明:对于任何连续测量的数字信号,都可以用不同频率的正弦波信号的无限叠加来表示。     傅里叶变

分数阶微积分MATLAB计算

习题1 syms t z;Gam=int(exp(-t)*t^(z-1),t,0,inf);I1=subs(Gam,z,sym(1/2)),I2=subs(Gam,z,sym(3/2)),I3=subs(Gam,z,sym(5/2)),I4=subs(Gam,z,sym(7/2))

微积分的理解

三角函数 s i n ( θ ) ′ = c o s ( θ ) sin(\theta)' = cos(\theta) sin(θ)′=cos(θ) 乘法法则

微积分复习笔记 Calculus Volume 1 - 1.2 Basic Classes of Functions

1.2 Basic Classes of Functions - Calculus Volume 1 | OpenStax

微积分复习笔记 Calculus Volume1 - 1.1 Review of Functions

1.1 Review of Functions - Calculus Volume 1 | OpenStax

别人的傅氏级数展开式函数

在 Matlab 中,没有专门求傅氏级数的函数调用,但我们可编写一个函数来求 f (x)在 [-l,l]上的 Fourier 级数. 打开 Matlab 的 M 文件编辑窗口,输入如下命令行:  function [A,B,F]=fseries(f,x,n,a,b)  if nargin==3,a=-pi;b=pi;end  L=(b-a)/2;  if a+b~=0,f=subs(f,x,x+L

数学基础 -- 微积分之三角函数幂的积分

三角函数幂的积分处理 1. 积分形式 1.1 ∫ sin ⁡ m ( x ) cos ⁡ n ( x ) d x \int \sin^m(x) \cos^n(x) \, dx ∫sinm(x)cosn(x)dx 1.1.1 当 n n n 为奇数时 分离奇数次幂 如果 cos ⁡ n ( x ) \cos^n(x) cosn(x) 是奇数次幂,可以将其分解为 cos ⁡ n −

Python算法工程师面试整理-微积分

1. 导数 ● 定义:导数表示函数的瞬时变化率。 ● 常用规则: ○ 乘法规则:(fg)' = f'g + fg'。 ○ 链式法则:(f(g(x)))' = f'(g(x))