【论文笔记】RGB-D SLAM in Dynamic Environments Using Static Point Weighting(静态权值策略)在动态环境中使用静态点加权的RGB_DSLAM

本文主要是介绍【论文笔记】RGB-D SLAM in Dynamic Environments Using Static Point Weighting(静态权值策略)在动态环境中使用静态点加权的RGB_DSLAM,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章摘要

针对动态环境,提出了一种基于实时深度边缘的RGB_D SLAM系统。这个系统与现有的最先进的动态环境方法相比,可以显著地减小跟踪误差。

研究背景与论文工作

导航定位随着相机成本的减小发展越来越快,其中在SLAM系统中扮演者很重要角色的视觉测量仍不成熟。目前最先进的研究方法都是假定环境是静态的,忽略了动态环境中经常出现的人、物等因素的影响。而视觉测量目前主要分为两大阵营,一种是上一篇文章里写道的Dense Visual SLAM for RGB-D Cameras里面提到的密集视觉测量方法,而另一种是基于特征对应的视觉测量方法。在这两种方法中为了补偿动态点,都需要进行或多或少地特征对应,这是十分耗时的。
本文提出通过深度边缘点的对应来进行视觉测量。深度边缘点的密度很低,可以进行有效得匹配;而另一方面,深度边缘点反映了环境的纹理。在这里插入图片描述如上图,这里提取的全部是环境中的深度边缘点,既反映了环境的纹理,同时也能进行有效地匹配。

基于前景边缘的视觉测量法

总述

前景边缘首先只提取图片的边缘点作为估计,然后每隔N张图选取一张作为关键帧,关键帧则是用来进行静态权值估计的。得到的静态权值则可以反映出这个点属于静态环境的可能性有多大。静态权值还可以用来与IAICP算法相结合用来削减变换估计中动态移动物体的影响。

前景边缘点与遮挡边缘点

前景边缘点是指靠近摄像机的物体的边缘的点,这些点的特征是对相机的运动比较稳定,不会随着相机的运动出现几何误差,而遮挡边缘点则会因为相机的移动而非常敏感。所以在评估相机位置时候应该要排除遮挡边缘点的干扰。

静态权值估计

在这里插入图片描述图片中第二排是识别出来的前景边缘点,第三排是通过静态权值计算得出的结果,红色为动态物体的边缘,二绿色则是静态物体的边缘。

由于具体如何评估静态权值的理论部分和闭环检测部分尚且不懂,我直接跳过,下面阐述实验结果

实验结果

此前很多前辈的实验都是通过 TUM RGB-D dataset来做的,结果都非常得棒,可是缺少了对图片中动态物体的评估。

视觉测量方法评估

在这里插入图片描述

1) Effect of Static Weighting

:The average improvement in terms of translational drift for low-dynamic sequences is 8%, and for high-dynamic sequences, the average improvement is 52%. This verifies that our static weighting strategy effectively reduces the influence of dynamic objects, especially for high-dynamic environments.

2) Effect of Static Weight Initialization:

在这里插入图片描述a图没有静态权重初始化则人身上的很多点会被当成是静态物体,b图加入了静态权重初始化,则人身上的边缘点区分得更好。

3) Comparison With Previous Methods:

Dense Visual Odometry (DVO):目前最先进的静态处理方案,但是只适用于有小部分动态点的情况。
model-based dense-visual-odometry (BaMVO):为动态环境设计的方案。
结论: Our method improves the visual odometry performance by 74.6% compared to DVO, and by 58.2% compared to BaMVO.
我们的方案基本上在所有的动态环境中表现都是最好的,甚至在静态环境中表现也最好。

结合后的SLAM系统评估

在这里插入图片描述

这篇关于【论文笔记】RGB-D SLAM in Dynamic Environments Using Static Point Weighting(静态权值策略)在动态环境中使用静态点加权的RGB_DSLAM的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/217994

相关文章

详解Vue如何使用xlsx库导出Excel文件

《详解Vue如何使用xlsx库导出Excel文件》第三方库xlsx提供了强大的功能来处理Excel文件,它可以简化导出Excel文件这个过程,本文将为大家详细介绍一下它的具体使用,需要的小伙伴可以了解... 目录1. 安装依赖2. 创建vue组件3. 解释代码在Vue.js项目中导出Excel文件,使用第三

Linux alias的三种使用场景方式

《Linuxalias的三种使用场景方式》文章介绍了Linux中`alias`命令的三种使用场景:临时别名、用户级别别名和系统级别别名,临时别名仅在当前终端有效,用户级别别名在当前用户下所有终端有效... 目录linux alias三种使用场景一次性适用于当前用户全局生效,所有用户都可调用删除总结Linux

java图像识别工具类(ImageRecognitionUtils)使用实例详解

《java图像识别工具类(ImageRecognitionUtils)使用实例详解》:本文主要介绍如何在Java中使用OpenCV进行图像识别,包括图像加载、预处理、分类、人脸检测和特征提取等步骤... 目录前言1. 图像识别的背景与作用2. 设计目标3. 项目依赖4. 设计与实现 ImageRecogni

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

Mysql虚拟列的使用场景

《Mysql虚拟列的使用场景》MySQL虚拟列是一种在查询时动态生成的特殊列,它不占用存储空间,可以提高查询效率和数据处理便利性,本文给大家介绍Mysql虚拟列的相关知识,感兴趣的朋友一起看看吧... 目录1. 介绍mysql虚拟列1.1 定义和作用1.2 虚拟列与普通列的区别2. MySQL虚拟列的类型2

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

关于@MapperScan和@ComponentScan的使用问题

《关于@MapperScan和@ComponentScan的使用问题》文章介绍了在使用`@MapperScan`和`@ComponentScan`时可能会遇到的包扫描冲突问题,并提供了解决方法,同时,... 目录@MapperScan和@ComponentScan的使用问题报错如下原因解决办法课外拓展总结@

mysql数据库分区的使用

《mysql数据库分区的使用》MySQL分区技术通过将大表分割成多个较小片段,提高查询性能、管理效率和数据存储效率,本文就来介绍一下mysql数据库分区的使用,感兴趣的可以了解一下... 目录【一】分区的基本概念【1】物理存储与逻辑分割【2】查询性能提升【3】数据管理与维护【4】扩展性与并行处理【二】分区的

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存