【论文笔记】RGB-D SLAM in Dynamic Environments Using Static Point Weighting(静态权值策略)在动态环境中使用静态点加权的RGB_DSLAM

本文主要是介绍【论文笔记】RGB-D SLAM in Dynamic Environments Using Static Point Weighting(静态权值策略)在动态环境中使用静态点加权的RGB_DSLAM,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章摘要

针对动态环境,提出了一种基于实时深度边缘的RGB_D SLAM系统。这个系统与现有的最先进的动态环境方法相比,可以显著地减小跟踪误差。

研究背景与论文工作

导航定位随着相机成本的减小发展越来越快,其中在SLAM系统中扮演者很重要角色的视觉测量仍不成熟。目前最先进的研究方法都是假定环境是静态的,忽略了动态环境中经常出现的人、物等因素的影响。而视觉测量目前主要分为两大阵营,一种是上一篇文章里写道的Dense Visual SLAM for RGB-D Cameras里面提到的密集视觉测量方法,而另一种是基于特征对应的视觉测量方法。在这两种方法中为了补偿动态点,都需要进行或多或少地特征对应,这是十分耗时的。
本文提出通过深度边缘点的对应来进行视觉测量。深度边缘点的密度很低,可以进行有效得匹配;而另一方面,深度边缘点反映了环境的纹理。在这里插入图片描述如上图,这里提取的全部是环境中的深度边缘点,既反映了环境的纹理,同时也能进行有效地匹配。

基于前景边缘的视觉测量法

总述

前景边缘首先只提取图片的边缘点作为估计,然后每隔N张图选取一张作为关键帧,关键帧则是用来进行静态权值估计的。得到的静态权值则可以反映出这个点属于静态环境的可能性有多大。静态权值还可以用来与IAICP算法相结合用来削减变换估计中动态移动物体的影响。

前景边缘点与遮挡边缘点

前景边缘点是指靠近摄像机的物体的边缘的点,这些点的特征是对相机的运动比较稳定,不会随着相机的运动出现几何误差,而遮挡边缘点则会因为相机的移动而非常敏感。所以在评估相机位置时候应该要排除遮挡边缘点的干扰。

静态权值估计

在这里插入图片描述图片中第二排是识别出来的前景边缘点,第三排是通过静态权值计算得出的结果,红色为动态物体的边缘,二绿色则是静态物体的边缘。

由于具体如何评估静态权值的理论部分和闭环检测部分尚且不懂,我直接跳过,下面阐述实验结果

实验结果

此前很多前辈的实验都是通过 TUM RGB-D dataset来做的,结果都非常得棒,可是缺少了对图片中动态物体的评估。

视觉测量方法评估

在这里插入图片描述

1) Effect of Static Weighting

:The average improvement in terms of translational drift for low-dynamic sequences is 8%, and for high-dynamic sequences, the average improvement is 52%. This verifies that our static weighting strategy effectively reduces the influence of dynamic objects, especially for high-dynamic environments.

2) Effect of Static Weight Initialization:

在这里插入图片描述a图没有静态权重初始化则人身上的很多点会被当成是静态物体,b图加入了静态权重初始化,则人身上的边缘点区分得更好。

3) Comparison With Previous Methods:

Dense Visual Odometry (DVO):目前最先进的静态处理方案,但是只适用于有小部分动态点的情况。
model-based dense-visual-odometry (BaMVO):为动态环境设计的方案。
结论: Our method improves the visual odometry performance by 74.6% compared to DVO, and by 58.2% compared to BaMVO.
我们的方案基本上在所有的动态环境中表现都是最好的,甚至在静态环境中表现也最好。

结合后的SLAM系统评估

在这里插入图片描述

这篇关于【论文笔记】RGB-D SLAM in Dynamic Environments Using Static Point Weighting(静态权值策略)在动态环境中使用静态点加权的RGB_DSLAM的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/217994

相关文章

一文详解如何使用Java获取PDF页面信息

《一文详解如何使用Java获取PDF页面信息》了解PDF页面属性是我们在处理文档、内容提取、打印设置或页面重组等任务时不可或缺的一环,下面我们就来看看如何使用Java语言获取这些信息吧... 目录引言一、安装和引入PDF处理库引入依赖二、获取 PDF 页数三、获取页面尺寸(宽高)四、获取页面旋转角度五、判断

Windows环境下解决Matplotlib中文字体显示问题的详细教程

《Windows环境下解决Matplotlib中文字体显示问题的详细教程》本文详细介绍了在Windows下解决Matplotlib中文显示问题的方法,包括安装字体、更新缓存、配置文件设置及编码調整,并... 目录引言问题分析解决方案详解1. 检查系统已安装字体2. 手动添加中文字体(以SimHei为例)步骤

C++中assign函数的使用

《C++中assign函数的使用》在C++标准模板库中,std::list等容器都提供了assign成员函数,它比操作符更灵活,支持多种初始化方式,下面就来介绍一下assign的用法,具有一定的参考价... 目录​1.assign的基本功能​​语法​2. 具体用法示例​​​(1) 填充n个相同值​​(2)

Spring StateMachine实现状态机使用示例详解

《SpringStateMachine实现状态机使用示例详解》本文介绍SpringStateMachine实现状态机的步骤,包括依赖导入、枚举定义、状态转移规则配置、上下文管理及服务调用示例,重点解... 目录什么是状态机使用示例什么是状态机状态机是计算机科学中的​​核心建模工具​​,用于描述对象在其生命

Java JDK1.8 安装和环境配置教程详解

《JavaJDK1.8安装和环境配置教程详解》文章简要介绍了JDK1.8的安装流程,包括官网下载对应系统版本、安装时选择非系统盘路径、配置JAVA_HOME、CLASSPATH和Path环境变量,... 目录1.下载JDK2.安装JDK3.配置环境变量4.检验JDK官网下载地址:Java Downloads

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

深入理解Go语言中二维切片的使用

《深入理解Go语言中二维切片的使用》本文深入讲解了Go语言中二维切片的概念与应用,用于表示矩阵、表格等二维数据结构,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录引言二维切片的基本概念定义创建二维切片二维切片的操作访问元素修改元素遍历二维切片二维切片的动态调整追加行动态

prometheus如何使用pushgateway监控网路丢包

《prometheus如何使用pushgateway监控网路丢包》:本文主要介绍prometheus如何使用pushgateway监控网路丢包问题,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录监控网路丢包脚本数据图表总结监控网路丢包脚本[root@gtcq-gt-monitor-prome

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

SpringBoot中如何使用Assert进行断言校验

《SpringBoot中如何使用Assert进行断言校验》Java提供了内置的assert机制,而Spring框架也提供了更强大的Assert工具类来帮助开发者进行参数校验和状态检查,下... 目录前言一、Java 原生assert简介1.1 使用方式1.2 示例代码1.3 优缺点分析二、Spring Fr