OpenCV自带的HAAR级联分类器对脸部(人脸、猫脸等)的检测识别

2023-10-13 16:40

本文主要是介绍OpenCV自带的HAAR级联分类器对脸部(人脸、猫脸等)的检测识别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在计算机视觉领域,检测人脸等是一种很常见且非常重要的应用,我们可以先通过开放计算机视觉库OpenCV来熟悉这个人脸识别领域。另外OpenCV关于颜色的识别,可以查阅:OpenCV的HSV颜色空间在无人车中颜色识别的应用HSV颜色识别的跟踪实践https://blog.csdn.net/weixin_41896770/article/details/131746841

1、多尺度检测人脸

我们先直接对一张图片中的多个人脸进行检测,看下OpenCV自带的这个级联分类器HAAR对于人脸识别的效果怎么样:

import cv2
import numpy as npimg = cv2.imread('c.png') # (H,W,C)
imgGray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)# 使用预训练模型创建 Cascade 分类器
getCascade = lambda model_name: cv2.CascadeClassifier(cv2.data.haarcascades + model_name)# 人脸
Cascade = getCascade("haarcascade_profileface.xml")
#Cascade = getCascade("haarcascade_frontalface_alt2.xml")# 多尺度识别人脸
faces = Cascade.detectMultiScale(imgGray,1.2,3)
# 矩形标注(左上角与右下角坐标)
for (x,y,w,h) in faces:cv2.rectangle(img, (x,y), (x+w,y+h), (0,0,255) , 2)cv2.imshow("face", img)
cv2.waitKey(0)
cv2.destroyAllWindows()

如图:

虽然位置有偏差,往右移动了一些,边界框没有在中心位置,但是对目标的大概位置还是能够检测到,也就是对于脸部这个对象还是可以正确的被识别到。
其中这个haarcascade_profileface.xml文件是OpenCV自带的人脸分类器,在Windows中的位置如下(我这里是在虚拟环境pygpu中安装的OpenCV视觉库):
envs\pygpu\Lib\site-packages\cv2\data
我们将会在这个目录里面看到,还包含有其他很多的预训练模型,如图:

2、haarcascade分类器

我们知道OpenCV自带的haarcascade分类器还是挺多的,这里的cascade翻译为级联,什么意思呢?
我个人的理解是,这里的提取特征方法还是用到卷积,因为卷积可以检测到边缘,质地纹理等,而一张图里面有很多很多的特征,这个时候我们可以将它们各种尺度缩放来分别提取不同特征并分组,这样一层一层的过滤,当需要检测需要的对象时,只需将不符合的直接丢弃,减少计算,这样就可以加速得到特征。不清楚这种表达是否正确,欢迎指正。
这里的haarcascade分两部分理解,haar先提取特征,然后使用cascade来对特征进行分类。所以haarcascade_profileface.xml这个文件的意思就是提取特征之后,加载人脸分类的一个预训练模型。下划线后面跟随的profileface名称也可以知道,需要进行的分类是人脸。
接下来我们换一个对象,检测猫脸和猫的眼睛,只需要更换对应的模型即可:

2.1、猫脸

我更换为一张包含多只猫的图片,然后加载这个猫脸的预训练模型:

Cascade = getCascade("haarcascade_frontalcatface.xml")

如图:

从检测的图片中,我们可以看到第一只猫没有检测到,其余4只都很好的检测到并做了标注。

2.2、检测眼睛

除了检测脸部之外,还可以检测眼睛,同样的我们更换为眼睛分类模型:

Cascade = getCascade("haarcascade_eye.xml")

如图:

从检测图片中可以看到,除了中间的那只猫,其余的都很好的检测到了眼睛。

3、detectMultiScale

分类器创建好了之后,我们还可以做多尺度检测,先来认识下这个detectMultiScale函数:

help(detectMultiScale)

detectMultiScale(image[, scaleFactor[, minNeighbors[, flags[, minSize[, maxSize]]]]]) -> objects

参数说明:

image:CV_8U类型的矩阵,也就是8位无符号整数[0,255],其余还有16位、32位等有符号整数与浮点数,其中的字母S表示有符号整型,U表示无符号整型,F表示浮点型
scaleFactor:搜索窗口前后大小的比例系数,默认为1.1,也就是每次搜索窗口扩大10%
minNeighbors:指定每个候选矩形应该有多少个邻居的参数
minSize:检测的最小尺寸,小于该值的对象将被忽略
maxSize:检测的最大尺寸,大于该值的对象将被忽略。如果maxSize == minSize模型在单个尺度上进行评估。

对于这种多尺度的检测,还可以在一张图中检测出不同对象并标注,也就是说可以做嵌套: 

faces1 = Cascade1.detectMultiScale(imgGray,1.3,2)
faces2 = Cascade2.detectMultiScale(imgGray,1.5,3)for (x,y,w,h) in faces1:cv2.rectangle(img, (x,y), (x+w,y+h), (0,0,255) , 2)for (x,y,w,h) in faces2:cv2.rectangle(img, (x,y), (x+w,y+h), (0,255,255) , 2)

 如下图,就将猫脸和眼睛都检测出来了:

4、摄像头检测

既然对于图片能够识别其中想要检测的对象,那在视频中应该也是没有问题的,我们来看下摄像头检测的效果,由于本人电脑没有摄像头,还是使用无人车上的CSI摄像头来测试下:
测试环境:JupyterLab

from jetbotmini import Camera
from jetbotmini import bgr8_to_jpeg
import traitlets
import ipywidgets.widgets as widgets
from IPython.display import display
import cv2camera = Camera.instance(width=720, height=720)
face_image = widgets.Image(format='jpeg', width=300, height=300)
face = widgets.Image(format='jpeg', width=300, height=300)
display(face_image)
display(face)face_cascade = cv2.CascadeClassifier('haarcascade_profileface.xml')

初始化摄像头与图片显示组件之后,紧接着就是实时地将摄像头接收的数据反馈到Image组件,并检测人脸以及将人脸特写,给显示出来。

while 1:frame = camera.valueframe = cv2.resize(frame, (300, 300))frame_face =frame.copy()gray = cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY)faces = face_cascade.detectMultiScale(gray)if len(faces)>0:(face_x, face_y, face_w, face_h) = faces[0]# 将检测到的人脸标记出来cv2.rectangle(frame,(face_x,face_y),(face_x+face_h,face_y+face_w),(0,255,0),2)#cv2.rectangle(frame,(face_x+10,face_y),(face_x+face_w-10,face_y+face_h+20),(0,255,0),2)frame_face = frame_face[face_y:face_y+face_h,face_x:face_x+face_w]frame_face = cv2.resize(frame_face,(300,300))face.value = bgr8_to_jpeg(frame_face)# 实时传回图像数据进行显示face_image.value = bgr8_to_jpeg(frame)

如图:

这里还多出一个显示脸部特写的组件,这里没有截图了,比较简单,用法是一样的,将识别到的脸部显示出来即可。

5、错误处理

如果在前面不使用匿名函数:

getCascade = lambda model_name: cv2.CascadeClassifier(cv2.data.haarcascades + model_name)
Cascade = getCascade("haarcascade_profileface.xml")

处理的话,而使用类似后面摄像头中的写法:

cv2.CascadeClassifier('haarcascade_profileface.xml')

如果报下面的错误:

error: OpenCV(4.6.0) D:\a\opencv-python\opencv-python\opencv\modules\objdetect\src\cascadedetect.cpp:1689: error: (-215:Assertion failed) !empty() in function 'cv::CascadeClassifier::detectMultiScale'

就是缺少这个文件,需要将haarcascade_profileface.xml模型文件拷贝到当前目录即可。

6、小结

在做图片显示的时候,有两种方式,可以是OpenCV自带的imshow方法:

cv2.imshow("face", img)
cv2.waitKey(0)
cv2.destroyAllWindows()

这种显示很简单直观,直接显示cv2.imread读取到的数据即可,另外需要注意的时,显示方法的后面需要waitkey,不然会出现程序不响应。

另外一种方法是在JupyterLab里面显示的情况,比如后面介绍的在摄像头里面的显示,这里需要注意图片的转换: 

face_image = widgets.Image(format='jpeg', width=300, height=300)
display(face_image)
face_image.value = bytes(cv2.imencode('.jpg', img)[1])

这里的widgets.Image组件格式是jpeg格式,所以需要进行编码成jpeg格式之后,再转换成二进制的字节序列赋值给这个图片组件即可。

其中的字节函数bytes里面的取值范围是[0,255],比如

bytes([0,97,98,99,255]) # b'\x00abc\xff'

如果不在这个范围就会报错:

bytes([0,97,98,99,255,256])
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
ValueError: bytes must be in range(0, 256) 

这篇关于OpenCV自带的HAAR级联分类器对脸部(人脸、猫脸等)的检测识别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/204539

相关文章

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

基于 YOLOv5 的积水检测系统:打造高效智能的智慧城市应用

在城市发展中,积水问题日益严重,特别是在大雨过后,积水往往会影响交通甚至威胁人们的安全。通过现代计算机视觉技术,我们能够智能化地检测和识别积水区域,减少潜在危险。本文将介绍如何使用 YOLOv5 和 PyQt5 搭建一个积水检测系统,结合深度学习和直观的图形界面,为用户提供高效的解决方案。 源码地址: PyQt5+YoloV5 实现积水检测系统 预览: 项目背景

opencv 滚动条

参数介绍:createTrackbar( trackbarname , "hello" , &alpha_slider ,alpha_max ,  on_trackbar )  ;在标签中显示的文字(提示滑动条的用途) TrackbarName创建的滑动条要放置窗体的名字 “hello”滑动条的取值范围从 0 到 alpha_max (最小值只能为 zero).滑动后的值存放在

android-opencv-jni

//------------------start opencv--------------------@Override public void onResume(){ super.onResume(); //通过OpenCV引擎服务加载并初始化OpenCV类库,所谓OpenCV引擎服务即是 //OpenCV_2.4.3.2_Manager_2.4_*.apk程序包,存

JavaFX应用更新检测功能(在线自动更新方案)

JavaFX开发的桌面应用属于C端,一般来说需要版本检测和自动更新功能,这里记录一下一种版本检测和自动更新的方法。 1. 整体方案 JavaFX.应用版本检测、自动更新主要涉及一下步骤: 读取本地应用版本拉取远程版本并比较两个版本如果需要升级,那么拉取更新历史弹出升级控制窗口用户选择升级时,拉取升级包解压,重启应用用户选择忽略时,本地版本标志为忽略版本用户选择取消时,隐藏升级控制窗口 2.

OpenCV结构分析与形状描述符(11)椭圆拟合函数fitEllipse()的使用

操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C++11 算法描述 围绕一组2D点拟合一个椭圆。 该函数计算出一个椭圆,该椭圆在最小二乘意义上最好地拟合一组2D点。它返回一个内切椭圆的旋转矩形。使用了由[90]描述的第一个算法。开发者应该注意,由于数据点靠近包含的 Mat 元素的边界,返回的椭圆/旋转矩形数据

理解分类器(linear)为什么可以做语义方向的指导?(解纠缠)

Attribute Manipulation(属性编辑)、disentanglement(解纠缠)常用的两种做法:线性探针和PCA_disentanglement和alignment-CSDN博客 在解纠缠的过程中,有一种非常简单的方法来引导G向某个方向进行生成,然后我们通过向不同的方向进行行走,那么就会得到这个属性上的图像。那么你利用多个方向进行生成,便得到了各种方向的图像,每个方向对应了很多