动手学数据分析:对模型建立和模型评估

2023-10-12 04:48

本文主要是介绍动手学数据分析:对模型建立和模型评估,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

第三章 模型搭建和评估

经过前面的探索性数据分析我们可以很清楚的了解到数据集的情况

import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from IPython.display import Image
%matplotlib inline
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
plt.rcParams['figure.figsize'] = (10, 6)  # 设置输出图片大小
# 读取训练数集
train = pd.read_csv('train.csv')
train.shape
(891, 12)
train.head()
PassengerIdSurvivedPclassNameSexAgeSibSpParchTicketFareCabinEmbarked
0103Braund, Mr. Owen Harrismale22.010A/5 211717.2500NaNS
1211Cumings, Mrs. John Bradley (Florence Briggs Th...female38.010PC 1759971.2833C85C
2313Heikkinen, Miss. Lainafemale26.000STON/O2. 31012827.9250NaNS
3411Futrelle, Mrs. Jacques Heath (Lily May Peel)female35.01011380353.1000C123S
4503Allen, Mr. William Henrymale35.0003734508.0500NaNS

特征工程

任务一:缺失值填充
  • 对分类变量缺失值:填充某个缺失值字符(NA)、用最多类别的进行填充
  • 对连续变量缺失值:填充均值、中位数、众数
# 对分类变量进行填充
train['Cabin'] = train['Cabin'].fillna('NA')
train['Embarked'] = train['Embarked'].fillna('S')
# 对连续变量进行填充
train['Age'] = train['Age'].fillna(train['Age'].mean())
# 检查缺失值比例
train.isnull().mean().sort_values(ascending=False)
Embarked       0.0
Cabin          0.0
Fare           0.0
Ticket         0.0
Parch          0.0
SibSp          0.0
Age            0.0
Sex            0.0
Name           0.0
Pclass         0.0
Survived       0.0
PassengerId    0.0
dtype: float64

任务三:编码分类变量
# 取出所有的输入特征
data = train[['Pclass','Sex','Age','SibSp','Parch','Fare', 'Embarked']]
# 进行虚拟变量转换
data = pd.get_dummies(data)
data.head()
PclassAgeSibSpParchFareSex_femaleSex_maleEmbarked_CEmbarked_QEmbarked_S
0322.0107.250001001
1138.01071.283310100
2326.0007.925010001
3135.01053.100010001
4335.0008.050001001

模型搭建

  • 处理完前面的数据我们就得到建模数据,下一步是选择合适模型
  • 在进行模型选择之前我们需要先知道数据集最终是进行监督学习还是无监督学习
  • 除了根据我们任务来选择模型外,还可以根据数据样本量以及特征的稀疏性来决定
  • 刚开始我们总是先尝试使用一个基本的模型来作为其baseline,进而再训练其他模型做对比,最终选择泛化能力或性能比较好的模型
思考0
  • 数据集哪些差异会导致模型在拟合数据是发生变化
# sklearn模型算法选择路径图
Image('20170624105439491.png')

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-hBlmouXU-1598606835490)(output_21_0.png)]


任务一:切割训练集和测试集
  • 按比例切割训练集和测试集(一般测试集的比例有30%、25%、20%、15%和10%)
  • 按目标变量分层进行等比切割
  • 设置随机种子以便结果能复现
提示1
  • 切割数据集是为了后续能评估模型泛化能力
  • sklearn中切割数据集的方法为train_test_split
  • 查看函数文档可以在jupyter noteboo里面使用train_test_split?后回车即可看到
  • 分层和随机种子在参数里寻找
思考1
  • 什么情况下切割数据集的时候不用进行随机选取
from sklearn.model_selection import train_test_split
# 一般先取出X和y后再切割,有些情况会使用到未切割的,这时候X和y就可以用
X = data
y = train['Survived']
# 对数据集进行切割
X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, random_state=0)
# 查看数据形状
X_train.shape, X_test.shape
((668, 10), (223, 10))

任务二:模型创建
  • 创建基于线性模型的分类模型(逻辑回归)
  • 创建基于树的分类模型(决策树、随机森林)
  • 查看模型的参数,并更改参数值,观察模型变化
提示2
  • 逻辑回归不是回归模型而是分类模型,不要与LinearRegression混淆
  • 随机森林其实是决策树集成为了降低决策树过拟合的情况
  • 线性模型所在的模块为sklearn.linear_model
  • 树模型所在的模块为sklearn.ensemble
思考2
  • 为什么线性模型可以进行分类任务,背后是怎么的数学关系
  • 对于多分类问题,线性模型是怎么进行分类的
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
# 默认参数逻辑回归模型
lr = LogisticRegression()
lr.fit(X_train, y_train)
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,penalty='l2', random_state=None, solver='liblinear', tol=0.0001,verbose=0, warm_start=False)
# 查看训练集和测试集score值
print("Training set score: {:.2f}".format(lr.score(X_train, y_train)))
print("Testing set score: {:.2f}".format(lr.score(X_test, y_test)))
Training set score: 0.80
Testing set score: 0.78
# 调整参数后的逻辑回归模型
lr2 = LogisticRegression(C=100)
lr2.fit(X_train, y_train)
LogisticRegression(C=100, class_weight=None, dual=False, fit_intercept=True,intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,penalty='l2', random_state=None, solver='liblinear', tol=0.0001,verbose=0, warm_start=False)
print("Training set score: {:.2f}".format(lr2.score(X_train, y_train)))
print("Testing set score: {:.2f}".format(lr2.score(X_test, y_test)))
Training set score: 0.80
Testing set score: 0.79
# 默认参数的随机森林分类模型
rfc = RandomForestClassifier()
rfc.fit(X_train, y_train)
RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',max_depth=None, max_features='auto', max_leaf_nodes=None,min_impurity_decrease=0.0, min_impurity_split=None,min_samples_leaf=1, min_samples_split=2,min_weight_fraction_leaf=0.0, n_estimators=10, n_jobs=1,oob_score=False, random_state=None, verbose=0,warm_start=False)
print("Training set score: {:.2f}".format(rfc.score(X_train, y_train)))
print("Testing set score: {:.2f}".format(rfc.score(X_test, y_test)))
Training set score: 0.97
Testing set score: 0.82
# 调整参数后的随机森林分类模型
rfc2 = RandomForestClassifier(n_estimators=100, max_depth=5)
rfc2.fit(X_train, y_train)
RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',max_depth=5, max_features='auto', max_leaf_nodes=None,min_impurity_decrease=0.0, min_impurity_split=None,min_samples_leaf=1, min_samples_split=2,min_weight_fraction_leaf=0.0, n_estimators=100, n_jobs=1,oob_score=False, random_state=None, verbose=0,warm_start=False)
print("Training set score: {:.2f}".format(rfc2.score(X_train, y_train)))
print("Testing set score: {:.2f}".format(rfc2.score(X_test, y_test)))
Training set score: 0.86
Testing set score: 0.83
任务三:输出模型预测结果
  • 输出模型预测分类标签
  • 输出不通分类标签的预测概率
提示3
  • 一般监督模型在sklearn里面有个predict能输出预测标签,predict_proba则可以输出标签概率
思考3
  • 预测标签的概率对我们有什么帮助
# 预测标签
pred = lr.predict(X_train)
# 此时我们可以看到0和1的数组
pred[:10]
array([0, 1, 1, 1, 0, 0, 1, 0, 1, 1], dtype=int64)
# 预测标签概率
pred_proba = lr.predict_proba(X_train)
pred_proba[:10]
array([[0.62887291, 0.37112709],[0.14897206, 0.85102794],[0.47162003, 0.52837997],[0.20365672, 0.79634328],[0.86428125, 0.13571875],[0.9033887 , 0.0966113 ],[0.13829338, 0.86170662],[0.89516141, 0.10483859],[0.05735141, 0.94264859],[0.13593291, 0.86406709]])

模型评估

  • 模型评估是为了知道模型的泛化能力。
  • 交叉验证(cross-validation)是一种评估泛化性能的统计学方法,它比单次划分训练集和测试集的方法更加稳定、全面。
  • 在交叉验证中,数据被多次划分,并且需要训练多个模型。
  • 最常用的交叉验证是 k 折交叉验证(k-fold cross-validation),其中 k 是由用户指定的数字,通常取 5 或 10。
  • 准确率(precision)度量的是被预测为正例的样本中有多少是真正的正例
  • 召回率(recall)度量的是正类样本中有多少被预测为正类
  • f-分数是准确率与召回率的调和平均
任务一:交叉验证
  • 用10折交叉验证来评估逻辑回归模型
  • 计算交叉验证精度的平均值
Image('Snipaste_2020-01-05_16-37-56.png')

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ifDhlnLk-1598606835493)(output_54_0.png)]

提示4
  • 交叉验证在sklearn中的模块为sklearn.model_selection
思考4
  • k折越多的情况下会带来什么样的影响?
from sklearn.model_selection import cross_val_score
lr = LogisticRegression(C=100)
scores = cross_val_score(lr, X_train, y_train, cv=10)
# k折交叉验证分数
scores
array([0.82352941, 0.79411765, 0.80597015, 0.80597015, 0.8358209 ,0.88059701, 0.72727273, 0.86363636, 0.75757576, 0.71212121])
# 平均交叉验证分数
print("Average cross-validation score: {:.2f}".format(scores.mean()))
Average cross-validation score: 0.80
任务二:混淆矩阵
  • 计算二分类问题的混淆矩阵
  • 计算精确率、召回率以及f-分数
Image('Snipaste_2020-01-05_16-38-26.png')

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-s8rffKNw-1598606835495)(output_62_0.png)]

Image('Snipaste_2020-01-05_16-39-27.png')

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ZmIK93jV-1598606835496)(output_63_0.png)]

提示5
  • 混淆矩阵的方法在sklearn中的sklearn.metrics模块
  • 混淆矩阵需要输入真实标签和预测标签
思考5
  • 如果自己实现混淆矩阵的时候该注意什么问题
from sklearn.metrics import confusion_matrix
# 训练模型
lr = LogisticRegression(C=100)
lr.fit(X_train, y_train)
LogisticRegression(C=100, class_weight=None, dual=False, fit_intercept=True,intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,penalty='l2', random_state=None, solver='liblinear', tol=0.0001,verbose=0, warm_start=False)
# 模型预测结果
pred = lr.predict(X_train)
# 混淆矩阵
confusion_matrix(y_train, pred)
array([[350,  62],[ 71, 185]], dtype=int64)
from sklearn.metrics import classification_report
# 精确率、召回率以及f1-score
print(classification_report(y_train, pred))
             precision    recall  f1-score   support0       0.83      0.85      0.84       4121       0.75      0.72      0.74       256avg / total       0.80      0.80      0.80       668

任务三:ROC曲线
  • 绘制ROC曲线
提示6
  • ROC曲线在sklearn中的模块为sklearn.metrics
  • ROC曲线下面所包围的面积越大越好
思考6
  • 对于多分类问题如何绘制ROC曲线
from sklearn.metrics import roc_curve
fpr, tpr, thresholds = roc_curve(y_test, lr.decision_function(X_test))
plt.plot(fpr, tpr, label="ROC Curve")
plt.xlabel("FPR")
plt.ylabel("TPR (recall)")
# 找到最接近于0的阈值
close_zero = np.argmin(np.abs(thresholds))
plt.plot(fpr[close_zero], tpr[close_zero], 'o', markersize=10, label="threshold zero", fillstyle="none", c='k', mew=2)
plt.legend(loc=4)
<matplotlib.legend.Legend at 0x2e4ea25db00>

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-4eB1hW4u-1598606835498)(output_77_1.png)]


这篇关于动手学数据分析:对模型建立和模型评估的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/193361

相关文章

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)

《C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)》本文主要介绍了C#集成DeepSeek模型实现AI私有化的方法,包括搭建基础环境,如安装Ollama和下载DeepS... 目录前言搭建基础环境1、安装 Ollama2、下载 DeepSeek R1 模型客户端 ChatBo

SpringBoot快速接入OpenAI大模型的方法(JDK8)

《SpringBoot快速接入OpenAI大模型的方法(JDK8)》本文介绍了如何使用AI4J快速接入OpenAI大模型,并展示了如何实现流式与非流式的输出,以及对函数调用的使用,AI4J支持JDK8... 目录使用AI4J快速接入OpenAI大模型介绍AI4J-github快速使用创建SpringBoot

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

如何在本地部署 DeepSeek Janus Pro 文生图大模型

《如何在本地部署DeepSeekJanusPro文生图大模型》DeepSeekJanusPro模型在本地成功部署,支持图片理解和文生图功能,通过Gradio界面进行交互,展示了其强大的多模态处... 目录什么是 Janus Pro1. 安装 conda2. 创建 python 虚拟环境3. 克隆 janus

本地私有化部署DeepSeek模型的详细教程

《本地私有化部署DeepSeek模型的详细教程》DeepSeek模型是一种强大的语言模型,本地私有化部署可以让用户在自己的环境中安全、高效地使用该模型,避免数据传输到外部带来的安全风险,同时也能根据自... 目录一、引言二、环境准备(一)硬件要求(二)软件要求(三)创建虚拟环境三、安装依赖库四、获取 Dee

DeepSeek模型本地部署的详细教程

《DeepSeek模型本地部署的详细教程》DeepSeek作为一款开源且性能强大的大语言模型,提供了灵活的本地部署方案,让用户能够在本地环境中高效运行模型,同时保护数据隐私,在本地成功部署DeepSe... 目录一、环境准备(一)硬件需求(二)软件依赖二、安装Ollama三、下载并部署DeepSeek模型选

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe