代码随想录算法训练营第五十六天 | 动态规划 part 14 | 1143.最长公共子序列、1035.不相交的线、53. 最大子序和(dp)

本文主要是介绍代码随想录算法训练营第五十六天 | 动态规划 part 14 | 1143.最长公共子序列、1035.不相交的线、53. 最大子序和(dp),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 1143.最长公共子序列
    • 思路
    • 代码
  • 1035.不相交的线
    • 思路
    • 代码
  • 53. 最大子序和(dp)
    • 思路
    • 代码

1143.最长公共子序列

Leetcode

在这里插入图片描述

思路

本题和718. 最长重复子数组 区别在于这里不要求是连续的了,但要有相对顺序,即:“ace” 是 “abcde” 的子序列,但 “aec” 不是 “abcde” 的子序列。

不是连续的话,具体写代码的区别体现在递推公式上,

if text1[i - 1] != text2[j - 1]: dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])

从下图可以看出来可以有三个方向推导出dp[i][j]
在这里插入图片描述
举例推导dp数组

以输入:text1 = “abcde”, text2 = “ace” 为例,dp状态如图:

在这里插入图片描述

代码

class Solution:def longestCommonSubsequence(self, text1: str, text2: str) -> int:dp = [[0] * (len(text1) + 1) for _ in range(len(text2) + 1)]for i in range(1, len(text2) + 1):for j in range(1, len(text1) + 1):if text2[i - 1] == text1[j - 1]:dp[i][j] = dp[i - 1][j - 1] + 1else:dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])return dp[-1][-1]
  • 时间复杂度: O(n * m),其中 n 和 m 分别为 text1 和 text2 的长度
  • 空间复杂度: O(n * m)

1035.不相交的线

Leetcode
在这里插入图片描述

思路

此题和上题一模一样。

代码

class Solution:def maxUncrossedLines(self, nums1: List[int], nums2: List[int]) -> int:dp = [[0] * (len(nums1) + 1) for _ in range(len(nums2) + 1)]for i in range(1, len(nums2) + 1):for j in range(1, len(nums1) + 1):if nums2[i - 1] == nums1[j - 1]:dp[i][j] = dp[i - 1][j - 1] + 1else:dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])return dp[-1][-1]

53. 最大子序和(dp)

Leetcode

在这里插入图片描述

思路

  1. dp[i]:包括下标i(以nums[i]为结尾)的最大连续子序列和为dp[i]。
  2. 递推公式:
    dp[i]只有两个方向可以推出来:
    • dp[i - 1] + nums[i],即:nums[i]加入当前连续子序列和
    • nums[i],即:从头开始计算当前连续子序列和
      我一开始写成了dp[i] = max(dp[i], dp[i - 1] + nums[i]),那这就不对了,因为这样就会受到dp[i]初始化的影响。
  3. 初始化:dp[0] = nums[0],剩下的随意
  4. 遍历顺序从前往后
  5. 举例
    以示例一为例,输入:nums = [-2,1,-3,4,-1,2,1,-5,4],对应的dp状态如下:
    在这里插入图片描述

代码

class Solution:def maxSubArray(self, nums: List[int]) -> int:dp = [nums[0]] * len(nums)res = nums[0]for i in range(1, len(nums)):dp[i] = max(nums[i], dp[i - 1] + nums[i])res = max(res, dp[i])return res
  • 时间复杂度:O(n)
  • 空间复杂度:O(n)

这篇关于代码随想录算法训练营第五十六天 | 动态规划 part 14 | 1143.最长公共子序列、1035.不相交的线、53. 最大子序和(dp)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1932

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

Android 悬浮窗开发示例((动态权限请求 | 前台服务和通知 | 悬浮窗创建 )

《Android悬浮窗开发示例((动态权限请求|前台服务和通知|悬浮窗创建)》本文介绍了Android悬浮窗的实现效果,包括动态权限请求、前台服务和通知的使用,悬浮窗权限需要动态申请并引导... 目录一、悬浮窗 动态权限请求1、动态请求权限2、悬浮窗权限说明3、检查动态权限4、申请动态权限5、权限设置完毕后

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

关于最长递增子序列问题概述

《关于最长递增子序列问题概述》本文详细介绍了最长递增子序列问题的定义及两种优化解法:贪心+二分查找和动态规划+状态压缩,贪心+二分查找时间复杂度为O(nlogn),通过维护一个有序的“尾巴”数组来高效... 一、最长递增子序列问题概述1. 问题定义给定一个整数序列,例如 nums = [10, 9, 2

MySQL数据库函数之JSON_EXTRACT示例代码

《MySQL数据库函数之JSON_EXTRACT示例代码》:本文主要介绍MySQL数据库函数之JSON_EXTRACT的相关资料,JSON_EXTRACT()函数用于从JSON文档中提取值,支持对... 目录前言基本语法路径表达式示例示例 1: 提取简单值示例 2: 提取嵌套值示例 3: 提取数组中的值注意

CSS3中使用flex和grid实现等高元素布局的示例代码

《CSS3中使用flex和grid实现等高元素布局的示例代码》:本文主要介绍了使用CSS3中的Flexbox和Grid布局实现等高元素布局的方法,通过简单的两列实现、每行放置3列以及全部代码的展示,展示了这两种布局方式的实现细节和效果,详细内容请阅读本文,希望能对你有所帮助... 过往的实现方法是使用浮动加

JAVA调用Deepseek的api完成基本对话简单代码示例

《JAVA调用Deepseek的api完成基本对话简单代码示例》:本文主要介绍JAVA调用Deepseek的api完成基本对话的相关资料,文中详细讲解了如何获取DeepSeekAPI密钥、添加H... 获取API密钥首先,从DeepSeek平台获取API密钥,用于身份验证。添加HTTP客户端依赖使用Jav