深度学习batch、batch_size、epoch、iteration以及小样本中episode、support set、query set关系

本文主要是介绍深度学习batch、batch_size、epoch、iteration以及小样本中episode、support set、query set关系,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

batch、batch_size、epoch、iteration关系:

epoch:整个数据集

batch: 整个数据集分成多少小块进行训练

batch_size: 一次训练(1 batch)需要 batch_size个样本

iteration: 整个数据集需要用batch_size训练多少轮

例如:训练集1000个样本,分成100小块batch,batch_size=10,则iteration=100轮,epoch=1


小样本中episode、support set、query set关系

小样本中分为meta-training和meta-testing
meta-testing从总类中随机选择N个类,每个类选k+x个样本,k个样本用作support set,x用作query set,同理可得meta-training中的S和Q(此时不一定和testing选N个类或者k个样本)

img

一个episode/task 就是一次Support set + Query set训练(包含数据集划分,训练,反向传播,更新参数过程,下一个episode,再选择其他几个类训练模型。

假设上述是5-way-1-shot,一个episod训练过程如下:

  1. backbone从S的5类图片中提一个 5x1600 维的 support feature Zs(假设每一类图片用一个1600维向量表示,5类就是一个5x1600 维的矩阵)
  2. 将这个 support feature 送入 classifier 中
  3. Query set 将一张图片送入 backbone ,提出一个1x1600 维的 query feature Zq (因为 Query set 中的这张图片肯定是属于 5 类中的某一类,而一类图片是用一个 1600 维的向量来表征的,因此这里将会得到一个 1x1600 维的矩阵)
  4. 将这个 query feature 送入 classifier 中
  5. classifier 中接收到了两个feature: Z’s ( 5x1600 维 ) 和 Zq( 1x1600 维 ),计算两个feature之间的距离(余弦距离就是做内积得到一个5x1的向量)
  6. 经过sofmax得到值最大的一个或者one-hot编码为1就是query set属于哪一类
  7. 预测结果和真实标签计算loss ,梯度反向传播来更新backbone的网络参数

参考文章:
神经网络中episode、epoch、iteration、batch_size的理解
episode、epoch、batch-size、iteration区别
小样本学习中的一些基本概念
小样本学习(Few-Shot Learning)训练参数意义

这篇关于深度学习batch、batch_size、epoch、iteration以及小样本中episode、support set、query set关系的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/192218

相关文章

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

深度剖析SpringBoot日志性能提升的原因与解决

《深度剖析SpringBoot日志性能提升的原因与解决》日志记录本该是辅助工具,却为何成了性能瓶颈,SpringBoot如何用代码彻底破解日志导致的高延迟问题,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言第一章:日志性能陷阱的底层原理1.1 日志级别的“双刃剑”效应1.2 同步日志的“吞吐量杀手”

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

Springboot项目构建时各种依赖详细介绍与依赖关系说明详解

《Springboot项目构建时各种依赖详细介绍与依赖关系说明详解》SpringBoot通过spring-boot-dependencies统一依赖版本管理,spring-boot-starter-w... 目录一、spring-boot-dependencies1.简介2. 内容概览3.核心内容结构4.

深度解析Python yfinance的核心功能和高级用法

《深度解析Pythonyfinance的核心功能和高级用法》yfinance是一个功能强大且易于使用的Python库,用于从YahooFinance获取金融数据,本教程将深入探讨yfinance的核... 目录yfinance 深度解析教程 (python)1. 简介与安装1.1 什么是 yfinance?

Python学习笔记之getattr和hasattr用法示例详解

《Python学习笔记之getattr和hasattr用法示例详解》在Python中,hasattr()、getattr()和setattr()是一组内置函数,用于对对象的属性进行操作和查询,这篇文章... 目录1.getattr用法详解1.1 基本作用1.2 示例1.3 原理2.hasattr用法详解2.

Java中数组与栈和堆之间的关系说明

《Java中数组与栈和堆之间的关系说明》文章讲解了Java数组的初始化方式、内存存储机制、引用传递特性及遍历、排序、拷贝技巧,强调引用数据类型方法调用时形参可能修改实参,但需注意引用指向单一对象的特性... 目录Java中数组与栈和堆的关系遍历数组接下来是一些编程小技巧总结Java中数组与栈和堆的关系关于