深度学习batch、batch_size、epoch、iteration以及小样本中episode、support set、query set关系

本文主要是介绍深度学习batch、batch_size、epoch、iteration以及小样本中episode、support set、query set关系,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

batch、batch_size、epoch、iteration关系:

epoch:整个数据集

batch: 整个数据集分成多少小块进行训练

batch_size: 一次训练(1 batch)需要 batch_size个样本

iteration: 整个数据集需要用batch_size训练多少轮

例如:训练集1000个样本,分成100小块batch,batch_size=10,则iteration=100轮,epoch=1


小样本中episode、support set、query set关系

小样本中分为meta-training和meta-testing
meta-testing从总类中随机选择N个类,每个类选k+x个样本,k个样本用作support set,x用作query set,同理可得meta-training中的S和Q(此时不一定和testing选N个类或者k个样本)

img

一个episode/task 就是一次Support set + Query set训练(包含数据集划分,训练,反向传播,更新参数过程,下一个episode,再选择其他几个类训练模型。

假设上述是5-way-1-shot,一个episod训练过程如下:

  1. backbone从S的5类图片中提一个 5x1600 维的 support feature Zs(假设每一类图片用一个1600维向量表示,5类就是一个5x1600 维的矩阵)
  2. 将这个 support feature 送入 classifier 中
  3. Query set 将一张图片送入 backbone ,提出一个1x1600 维的 query feature Zq (因为 Query set 中的这张图片肯定是属于 5 类中的某一类,而一类图片是用一个 1600 维的向量来表征的,因此这里将会得到一个 1x1600 维的矩阵)
  4. 将这个 query feature 送入 classifier 中
  5. classifier 中接收到了两个feature: Z’s ( 5x1600 维 ) 和 Zq( 1x1600 维 ),计算两个feature之间的距离(余弦距离就是做内积得到一个5x1的向量)
  6. 经过sofmax得到值最大的一个或者one-hot编码为1就是query set属于哪一类
  7. 预测结果和真实标签计算loss ,梯度反向传播来更新backbone的网络参数

参考文章:
神经网络中episode、epoch、iteration、batch_size的理解
episode、epoch、batch-size、iteration区别
小样本学习中的一些基本概念
小样本学习(Few-Shot Learning)训练参数意义

这篇关于深度学习batch、batch_size、epoch、iteration以及小样本中episode、support set、query set关系的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/192218

相关文章

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

poj 3050 dfs + set的妙用

题意: 给一个5x5的矩阵,求由多少个由连续6个元素组成的不一样的字符的个数。 解析: dfs + set去重搞定。 代码: #include <iostream>#include <cstdio>#include <set>#include <cstdlib>#include <algorithm>#include <cstring>#include <cm