Supervised Contrastive Pre-training for Mammographic Triage Screening Model

本文主要是介绍Supervised Contrastive Pre-training for Mammographic Triage Screening Model,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

方法

在这里插入图片描述
品红色箭头表示将生成的孪生编码器分别迁移到单视角学习模块和双视角学习模块

这篇关于Supervised Contrastive Pre-training for Mammographic Triage Screening Model的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/183237

相关文章

2014 Multi-University Training Contest 8小记

1002 计算几何 最大的速度才可能拥有无限的面积。 最大的速度的点 求凸包, 凸包上的点( 注意不是端点 ) 才拥有无限的面积 注意 :  凸包上如果有重点则不满足。 另外最大的速度为0也不行的。 int cmp(double x){if(fabs(x) < 1e-8) return 0 ;if(x > 0) return 1 ;return -1 ;}struct poin

2014 Multi-University Training Contest 7小记

1003   数学 , 先暴力再解方程。 在b进制下是个2 , 3 位数的 大概是10000进制以上 。这部分解方程 2-10000 直接暴力 typedef long long LL ;LL n ;int ok(int b){LL m = n ;int c ;while(m){c = m % b ;if(c == 3 || c == 4 || c == 5 ||

2014 Multi-University Training Contest 6小记

1003  贪心 对于111...10....000 这样的序列,  a 为1的个数,b为0的个数,易得当 x= a / (a + b) 时 f最小。 讲串分成若干段  1..10..0   ,  1..10..0 ,  要满足x非递减 。  对于 xi > xi+1  这样的合并 即可。 const int maxn = 100008 ;struct Node{int

MVC(Model-View-Controller)和MVVM(Model-View-ViewModel)

1、MVC MVC(Model-View-Controller) 是一种常用的架构模式,用于分离应用程序的逻辑、数据和展示。它通过三个核心组件(模型、视图和控制器)将应用程序的业务逻辑与用户界面隔离,促进代码的可维护性、可扩展性和模块化。在 MVC 模式中,各组件可以与多种设计模式结合使用,以增强灵活性和可维护性。以下是 MVC 各组件与常见设计模式的关系和作用: 1. Model(模型)

论文精读-Supervised Raw Video Denoising with a Benchmark Dataset on Dynamic Scenes

论文精读-Supervised Raw Video Denoising with a Benchmark Dataset on Dynamic Scenes 优势 1、构建了一个用于监督原始视频去噪的基准数据集。为了多次捕捉瞬间,我们手动为对象s创建运动。在高ISO模式下捕获每一时刻的噪声帧,并通过对多个噪声帧进行平均得到相应的干净帧。 2、有效的原始视频去噪网络(RViDeNet),通过探

Post-Training有多重要?一文带你了解全部细节

1. 简介 随着LLM学界和工业界日新月异的发展,不仅预训练所用的算力和数据正在疯狂内卷,后训练(post-training)的对齐和微调方法也在不断更新。InstructGPT、WebGPT等较早发布的模型使用标准RLHF方法,其中的数据管理风格和规模似乎已经过时。近来,Meta、谷歌和英伟达等AI巨头纷纷发布开源模型,附带发布详尽的论文或报告,包括Llama 3.1、Nemotron 340

diffusion model 合集

diffusion model 整理 DDPM: 前向一步到位,从数据集里的图片加噪声,根据随机到的 t t t 决定混合的比例,反向要慢慢迭代,DDPM是用了1000步迭代。模型的输入是带噪声图和 t,t 先生成embedding后,用通道和的方式加到每一层中间去: 训练过程是对每个样本分配一个随机的t,采样一个高斯噪声 ϵ \epsilon ϵ,然后根据 t 对图片和噪声进行混合,将加噪

COD论文笔记 ECCV2024 Just a Hint: Point-Supervised Camouflaged Object Detection

这篇论文的主要动机、现有方法的不足、拟解决的问题、主要贡献和创新点: 1. 动机 伪装物体检测(Camouflaged Object Detection, COD)旨在检测隐藏在环境中的伪装物体,这是一个具有挑战性的任务。由于伪装物体与背景的细微差别和模糊的边界,手动标注像素级的物体非常耗时,例如每张图片可能需要 60 分钟来标注。因此,作者希望通过减少标注负担,提出了一种仅依赖“点标注”的弱

Segment Anything Model(SAM)中的Adapter是什么?

在META团队发布的Segment Anything Model (SAM) 中,Adapter 是一种用于提升模型在特定任务或领域上的性能的机制。具体来说,SAM 是一个通用的分割模型,能够处理多种不同类型的图像分割任务,而 Adapter 的引入是为了更好地让模型适应不同的任务需求。 Adapter 的主要功能是: 模块化设计:Adapter 是一种小规模的、可插拔的网络模块,可以在不改

Vue内置指令v-once、v-memo和v-pre提升性能?

前言 Vue的内置指令估计大家都用过不少,例如v-for、v-if之类的就是最常用的内置指令,但今天给大家介绍几个平时用的比较少的内置指令。毕竟这几个Vue内置指令可用可不用,不用的时候系统正常跑,但在对的地方用了却能提升系统性能,下面将结合示例进行详细说明。 一、v-once 作用:在标签上使用v-once能使元素或者表达式只渲染一次。首次渲染之后,后面数据再发生变化时使用了v-once的