Ultra-Fast-Lane-Detection-v2 {后处理优化}//参考

2023-10-10 07:45

本文主要是介绍Ultra-Fast-Lane-Detection-v2 {后处理优化}//参考,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

采用三次多项式拟合生成的anchor特征点,在给定的polyfit_draw函数中,degree参数代表了拟合多项式的度数。

具体来说,当我们使用np.polyfit函数进行数据点的多项式拟合时,我们需要指定一个度数。这个度数决定了多项式的复杂度。例如:

  • degree = 1:线性拟合,也就是最简单的直线拟合。拟合的多项式形式为 f(y)=ax+b。

  • degree = 2:二次多项式拟合。拟合的多项式形式为 f(y)=ax2+bx+c。

  • degree = 3:三次多项式拟合。拟合的多项式形式为 f(y)=ax3+bx2+cx+d。

...以此类推。

度数越高,多项式越复杂,可以更准确地拟合数据点,但也更容易过拟合(即模型过于复杂,过于依赖训练数据,对新数据的适应性差)。

import torch, os, cv2
from utils.dist_utils import dist_print
import torch, os
from utils.common import merge_config, get_model
import tqdm
import torchvision.transforms as transforms
from data.dataset import LaneTestDatasetdef pred2coords(pred, row_anchor, col_anchor, local_width = 1, original_image_width = 1640, original_image_height = 590):batch_size, num_grid_row, num_cls_row, num_lane_row = pred['loc_row'].shapebatch_size, num_grid_col, num_cls_col, num_lane_col = pred['loc_col'].shapemax_indices_row = pred['loc_row'].argmax(1).cpu()# n , num_cls, num_lanesvalid_row = pred['exist_row'].argmax(1).cpu()# n, num_cls, num_lanesmax_indices_col = pred['loc_col'].argmax(1).cpu()# n , num_cls, num_lanesvalid_col = pred['exist_col'].argmax(1).cpu()# n, num_cls, num_lanespred['loc_row'] = pred['loc_row'].cpu()pred['loc_col'] = pred['loc_col'].cpu()coords = []row_lane_idx = [1,2]col_lane_idx = [0,3]for i in row_lane_idx:tmp = []if valid_row[0,:,i].sum() > num_cls_row / 2:for k in range(valid_row.shape[1]):if valid_row[0,k,i]:all_ind = torch.tensor(list(range(max(0,max_indices_row[0,k,i] - local_width), min(num_grid_row-1, max_indices_row[0,k,i] + local_width) + 1)))out_tmp = (pred['loc_row'][0,all_ind,k,i].softmax(0) * all_ind.float()).sum() + 0.5out_tmp = out_tmp / (num_grid_row-1) * original_image_widthtmp.append((int(out_tmp), int(row_anchor[k] * original_image_height)))coords.append(tmp)for i in col_lane_idx:tmp = []if valid_col[0,:,i].sum() > num_cls_col / 4:for k in range(valid_col.shape[1]):if valid_col[0,k,i]:all_ind = torch.tensor(list(range(max(0,max_indices_col[0,k,i] - local_width), min(num_grid_col-1, max_indices_col[0,k,i] + local_width) + 1)))out_tmp = (pred['loc_col'][0,all_ind,k,i].softmax(0) * all_ind.float()).sum() + 0.5out_tmp = out_tmp / (num_grid_col-1) * original_image_heighttmp.append((int(col_anchor[k] * original_image_width), int(out_tmp)))coords.append(tmp)return coordsdef polyfit_draw(img, coords, degree=3, color=(144, 238, 144), thickness=2):"""对车道线坐标进行多项式拟合并在图像上绘制曲线。:param img: 输入图像:param coords: 车道线坐标列表:param degree: 拟合的多项式的度数:param color: 曲线的颜色:param thickness: 曲线的宽度:return: 绘制了曲线的图像"""if len(coords) == 0:return imgx = [point[0] for point in coords]y = [point[1] for point in coords]# 对点进行多项式拟合coefficients = np.polyfit(y, x, degree)poly = np.poly1d(coefficients)ys = np.linspace(min(y), max(y), 100)xs = poly(ys)for i in range(len(ys) - 1):start_point = (int(xs[i]), int(ys[i]))end_point = (int(xs[i+1]), int(ys[i+1]))cv2.line(img, start_point, end_point, color, thickness)return imgif __name__ == "__main__":torch.backends.cudnn.benchmark = Trueargs, cfg = merge_config()cfg.batch_size = 1print('setting batch_size to 1 for demo generation')dist_print('start testing...')assert cfg.backbone in ['18','34','50','101','152','50next','101next','50wide','101wide']if cfg.dataset == 'CULane':cls_num_per_lane = 18elif cfg.dataset == 'Tusimple':cls_num_per_lane = 56else:raise NotImplementedErrornet = get_model(cfg)state_dict = torch.load(cfg.test_model, map_location='cpu')['model']compatible_state_dict = {}for k, v in state_dict.items():if 'module.' in k:compatible_state_dict[k[7:]] = velse:compatible_state_dict[k] = vnet.load_state_dict(compatible_state_dict, strict=False)net.eval()img_transforms = transforms.Compose([transforms.Resize((int(cfg.train_height / cfg.crop_ratio), cfg.train_width)),transforms.ToTensor(),transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),])if cfg.dataset == 'CULane':splits = ['test0_normal.txt']datasets = [LaneTestDataset(cfg.data_root,os.path.join(cfg.data_root, 'list/test_split/'+split),img_transform = img_transforms, crop_size = cfg.train_height) for split in splits]img_w, img_h = 1570, 660elif cfg.dataset == 'Tusimple':splits = ['test.txt']datasets = [LaneTestDataset(cfg.data_root,os.path.join(cfg.data_root, split),img_transform = img_transforms, crop_size = cfg.train_height) for split in splits]img_w, img_h = 1280, 720else:raise NotImplementedErrorfor split, dataset in zip(splits, datasets):loader = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle = False, num_workers=1)fourcc = cv2.VideoWriter_fourcc(*'MJPG')print(split[:-3]+'avi')vout = cv2.VideoWriter('4.'+'avi', fourcc , 30.0, (img_w, img_h))for i, data in enumerate(tqdm.tqdm(loader)):imgs, names = dataimgs = imgs.cuda()with torch.no_grad():pred = net(imgs)vis = cv2.imread(os.path.join(cfg.data_root,names[0]))coords = pred2coords(pred, cfg.row_anchor, cfg.col_anchor, original_image_width = img_w, original_image_height = img_h)for lane in coords:
#                 for coord in lane:
#                     cv2.circle(vis,coord,1,(0,255,0),-1)
#             vis = draw_lanes(vis, coords)
#             polyfit_draw(vis, lane)vis = polyfit_draw(vis, lane)  # 对每一条车道线都使用polyfit_draw函数vout.write(vis)vout.release()

 ps:

优化前

优化后

显存利用情况

 

这篇关于Ultra-Fast-Lane-Detection-v2 {后处理优化}//参考的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/179033

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

MySQL高性能优化规范

前言:      笔者最近上班途中突然想丰富下自己的数据库优化技能。于是在查阅了多篇文章后,总结出了这篇! 数据库命令规范 所有数据库对象名称必须使用小写字母并用下划线分割 所有数据库对象名称禁止使用mysql保留关键字(如果表名中包含关键字查询时,需要将其用单引号括起来) 数据库对象的命名要能做到见名识意,并且最后不要超过32个字符 临时库表必须以tmp_为前缀并以日期为后缀,备份

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

从状态管理到性能优化:全面解析 Android Compose

文章目录 引言一、Android Compose基本概念1.1 什么是Android Compose?1.2 Compose的优势1.3 如何在项目中使用Compose 二、Compose中的状态管理2.1 状态管理的重要性2.2 Compose中的状态和数据流2.3 使用State和MutableState处理状态2.4 通过ViewModel进行状态管理 三、Compose中的列表和滚动

基于SpringBoot的宠物服务系统+uniapp小程序+LW参考示例

系列文章目录 1.基于SSM的洗衣房管理系统+原生微信小程序+LW参考示例 2.基于SpringBoot的宠物摄影网站管理系统+LW参考示例 3.基于SpringBoot+Vue的企业人事管理系统+LW参考示例 4.基于SSM的高校实验室管理系统+LW参考示例 5.基于SpringBoot的二手数码回收系统+原生微信小程序+LW参考示例 6.基于SSM的民宿预订管理系统+LW参考示例 7.基于

构建高性能WEB之HTTP首部优化

0x00 前言 在讨论浏览器优化之前,首先我们先分析下从客户端发起一个HTTP请求到用户接收到响应之间,都发生了什么?知己知彼,才能百战不殆。这也是作为一个WEB开发者,为什么一定要深入学习TCP/IP等网络知识。 0x01 到底发生什么了? 当用户发起一个HTTP请求时,首先客户端将与服务端之间建立TCP连接,成功建立连接后,服务端将对请求进行处理,并对客户端做出响应,响应内容一般包括响应

DAY16:什么是慢查询,导致的原因,优化方法 | undo log、redo log、binlog的用处 | MySQL有哪些锁

目录 什么是慢查询,导致的原因,优化方法 undo log、redo log、binlog的用处  MySQL有哪些锁   什么是慢查询,导致的原因,优化方法 数据库查询的执行时间超过指定的超时时间时,就被称为慢查询。 导致的原因: 查询语句比较复杂:查询涉及多个表,包含复杂的连接和子查询,可能导致执行时间较长。查询数据量大:当查询的数据量庞大时,即使查询本身并不复杂,也可能导致

MySQL 数据优化

MySQL 数据优化的指南 MySQL 数据库优化是一个复杂且重要的过程,它直接影响到系统的性能、可靠性和可扩展性。在处理大量数据或高并发请求时,数据库的优化尤为关键。通过合理的数据库设计、索引使用、查询优化和硬件调优,可以大幅提高 MySQL 的运行效率。本文将从几个主要方面详细介绍 MySQL 的优化技巧,帮助你在实际应用中提升数据库性能。 一、数据库设计优化 1. 数据库的规范化与反规