基于matlab点云工具箱对点云进行处理三:对点云进行欧式聚类,使用三角剖分处理后获取点云簇的外接凸多边形

本文主要是介绍基于matlab点云工具箱对点云进行处理三:对点云进行欧式聚类,使用三角剖分处理后获取点云簇的外接凸多边形,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基于matlab点云工具箱对点云进行处理三:对点云进行欧式聚类,使用三角剖分处理后获取点云簇的外接凸多边形

步骤:

  1. 读取velodyne数据包pcap文件内的点云数据
  2. 使用pcdownsample函数对点云数据进行体素化采样,减少点云数量
  3. 使用find函数对点云进行筛选
  4. 使用pcdnoise去除点云内的噪声
  5. 使用pcsegdist进行欧式聚类
  6. 使用delaunayTriangulation进行三角剖分
  7. 使用convexHull获得外接凸包的顶点ID

相关程序在这里https://download.csdn.net/download/rmrgjxeivt/59557139

存在的问题:
弯曲道路的护栏(例如匝道)被识别为半圆形状,误识别区域巨大

基于matlab点云工具箱对点云进行处理一:去除地面,保留剩下的点https://blog.csdn.net/rmrgjxeivt/article/details/121830344
基于matlab点云工具箱对点云进行处理二:对点云进行欧式聚类,获得聚类后点云簇的外接矩形https://blog.csdn.net/rmrgjxeivt/article/details/121830919
基于matlab点云工具箱对点云进行处理三:对点云进行欧式聚类,使用三角剖分处理后获取点云簇的外接凸多边形https://blog.csdn.net/rmrgjxeivt/article/details/121831507
基于matlab点云工具箱对点云进行处理四:对点云进行欧式聚类,并获得包围点云簇的外接凹多边形https://blog.csdn.net/rmrgjxeivt/article/details/121831934
在这里插入图片描述
在这里插入图片描述


% 读取激光的PCAP文件
% 筛选感兴趣区域
% 播放筛选后的点云veloReader = velodyneFileReader('2021-11-23-12-49-43_Velodyne-HDL-32-Data.pcap','VLP32c');%% 设置感兴趣区域vehPara.length = 5.5;
vehPara.width = 2.2;
vehPara.d = 2.3; % 轴距
vehPara.rearOverhang = 1; % 前悬
vehPara.rearOverhang = 1; % 后悬
vehPara.CG2Rear = 1.45; % 质心到后轴insRegion = [-20 50 -10 10 0 2]; % 感兴趣区域[minX maxX minY maxY]
groundRegion = [-1, 0.2]; % 地面区域,z轴方向xLimits = [insRegion(1), insRegion(2)];
yLimits = [insRegion(3), insRegion(4)];
zLimits = [insRegion(5), insRegion(6)]; % 原点在后轴中心,因此此处相对于轮芯高度player = pcplayer(xLimits,yLimits,zLimits);xlabel(player.Axes,'X (m)');
ylabel(player.Axes,'Y (m)');
zlabel(player.Axes,'Z (m)');veloReader.CurrentTime = veloReader.StartTime + seconds(0.3);disp(['frame数量',num2str(veloReader.NumberOfFrames)])pause(2)frameID = 1000;while(hasFrame(veloReader) && player.isOpen() && (veloReader.CurrentTime < veloReader.EndTime))ptCloudObj = readFrame(veloReader,frameID);frameIDticlidarLo = [3.5 0 1.1 0 0 0];% 取出XYZxTemp = ptCloudObj.Location(:,:,2)+lidarLo(1);yTemp = -ptCloudObj.Location(:,:,1)+lidarLo(2);zTemp = ptCloudObj.Location(:,:,3)+lidarLo(3);pc = [xTemp(:) yTemp(:) zTemp(:) single(ptCloudObj.Intensity(:))];% max(pc(:,1))% min(pc(:,1))% max(pc(:,2))% 对地面的点进行范围筛选zMin = groundRegion(1);zMax = groundRegion(2);pcObj = pointCloud(pc(:,1:3));pcObj.Intensity = pc(:,4);pcOutNum = 30000; % 输出的点云数量objPointVeh = zeros(pcOutNum,4,'single');objPointVeh(:,1) = single(insRegion(2));objPointVeh(:,2) = single(insRegion(4));objPointVeh(:,3) = single(insRegion(6));objPointVeh(:,4) = single(0);% tic%% 降低点云密度 coder会报错gridStep = 0.05;pcObj_downSample = pcdownsample(pcObj,'gridAverage',gridStep); % 降低点云密度% maxNumPoints = 6;% pcObj_downSample = pcdownsample(pcObj,'nonuniformGridSample',maxNumPoints);%     percentage = 0.3;%     pcObj_downSample = pcdownsample(pcObj,'random',percentage);%% 筛选感兴趣区域(单位米),并排除车身内部的点云xLimits = [insRegion(1), insRegion(2)];yLimits = [insRegion(3), insRegion(4)];zLimits = [insRegion(5), insRegion(6)]; % 原点在后轴中心,因此此处相对于轮芯高度indices = find((pcObj_downSample.Location(:, 2) >= yLimits(1) ...& pcObj_downSample.Location(:,2) <=  yLimits(2) ...& pcObj_downSample.Location(:,1) >=  xLimits(1) ...& pcObj_downSample.Location(:,1) <=  xLimits(2) ...& pcObj_downSample.Location(:,3) <=  zLimits(2) ...& pcObj_downSample.Location(:,3) >=  zLimits(1) ...& ~(pcObj_downSample.Location(:,1)<(vehPara.length-vehPara.rearOverhang) ...& pcObj_downSample.Location(:,1)>(-vehPara.rearOverhang) ...& pcObj_downSample.Location(:,2)<vehPara.width/2 ...& pcObj_downSample.Location(:,2)>-vehPara.width/2)));% 设置感兴趣的点云区域if ~isempty(indices)pcObj_downSample = select(pcObj_downSample,indices);%% 去除噪声[pcObj_downSample,inlierIndices,~] = pcdenoise(pcObj_downSample);pcID_noNoise = 1:1:pcObj_downSample.Count;if ~isempty(inlierIndices)outlierIndices = [];if ~isempty(outlierIndices) % 非空才输出pcRemainObj = select(pcObj_downSample,pcID_out);elsepcRemainObj = pcObj_downSample;endelsepcRemainObj = pcObj_downSample;endcowPCRemain = size(pcRemainObj.Location)*[1;0];if cowPCRemain>pcOutNumcowPCRemain = pcOutNum;endobjPointVeh(1:cowPCRemain,:) = [pcRemainObj.Location pcRemainObj.Intensity];end% end% figure(2)% % pcshow(plane1)% pcshow(pcPlanel)% title('First Plane')% cowPCRemain = length(pcObj.Location(:,1));% pcRemain(1:cowPCRemain,:) = pcObj.Location;% figure(3)% % pcshow(plane1)% pcshow(pcRemain)% title('remainPtCloud')%% 欧式聚类% 最小聚类欧式距离minDist = 0.5;% 执行欧式聚类分割[labels,numClusters] = pcsegdist(pcRemainObj,minDist);% 显示分割结果hsvColorMap = hsv(numClusters);hsvColorMap_H = hsvColorMap(:,1);hsvColorMap_S = hsvColorMap(:,2);hsvColorMap_V = hsvColorMap(:,3);%     view(player,pcRemainObj.Location,[hsvColorMap_H(labels) hsvColorMap_S(labels) hsvColorMap_V(labels)]);%     pcshow(pcRemainObj.Location,labels);%     colormap(hsv(numClusters));% 遍历所有聚类结果figure(5);clfaxis([insRegion(1) insRegion(2) insRegion(3) insRegion(4)])title('欧式聚类分割');xlabel('X(m)');ylabel('Y(m)');zlabel('Z(m)');hold on;for i = 1:1:numClusters%% 进行多边形框计算pcClusterObjTemp = select(pcRemainObj,find(labels == i));% 求解获得凸多边形进行多边形框计算if length(pcClusterObjTemp.Location(:,1))>=3 % triPart = delaunayTriangulation(double(pcClusterObjTemp.Location(:,1)), ...double(pcClusterObjTemp.Location(:,2)));hull = convexHull(triPart);plot(pcClusterObjTemp.Location(hull,1), pcClusterObjTemp.Location(hull,2), 'r');endendhold offobjVehPoint = objPointVeh;%%pcObjOut =   pointCloud(objVehPoint(:,1:3));pcObjOut.Intensity = objVehPoint(:,4);frameID = frameID+1;tocview(player,pcObjOut);%     figure(4)%     pcshow(pcObjOut.Location)%     xlabel('X(m)');%     ylabel('Y(m)');%     zlabel('Z(m)');%     axis([insRegion(1) insRegion(2) insRegion(3) insRegion(4)])pause(0.02);end

这篇关于基于matlab点云工具箱对点云进行处理三:对点云进行欧式聚类,使用三角剖分处理后获取点云簇的外接凸多边形的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/171232

相关文章

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

springboot中使用okhttp3的小结

《springboot中使用okhttp3的小结》OkHttp3是一个JavaHTTP客户端,可以处理各种请求类型,比如GET、POST、PUT等,并且支持高效的HTTP连接池、请求和响应缓存、以及异... 在 Spring Boot 项目中使用 OkHttp3 进行 HTTP 请求是一个高效且流行的方式。

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e