如何使用evo工具评估LeGO-LOAM跑KITTI数据集的结果

2023-10-08 09:40

本文主要是介绍如何使用evo工具评估LeGO-LOAM跑KITTI数据集的结果,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

如何使用evo工具评估LeGO-LOAM跑KITTI数据集的结果

  • 下载KITTI数据集
  • 安装kitti2bag
  • 修改LeGO-LOAM代码
    • utility.h
    • imageProjection.cpp
    • transformFusion.cpp
  • 安装evo
  • 最终结果

下载KITTI数据集

官方链接:KITTI官网
我们只用得到点云数据集和groundtruth,也就是odometry data set (velodyne laser data, 80 GB)和odometry ground truth poses (4 MB),不过我自己也没下成功那个80G的包,而是在raw data选项卡里找了00-10对应的包来下,要下的是包的scnced+rectified data与calibration两项,如图:
在这里插入图片描述这里给出groundtruth的00-10对应的数据集的名字(图来自CSDN博主学无止境的小龟):
在这里插入图片描述

安装kitti2bag

这个工具是用来把我们上一步中下的KITTI数据集转化成bag文件形式,直接pip安装就行。

pip install kitti2bag

把上一步中的数据集解压并如下合并:
在这里插入图片描述
(那个bag文件是我生成的,不用管)
然后在2011_09_30所在文件夹(即当前文件夹下)运行:

kitti2bag -t 2011_09_30 -r 0018 raw_synced

注意标号一定是要和你下的数据集的号对应,比如我这里就是0018(之前没注意这个就总运行错误,排查半天发现命令没打对)。
成功之后就会把文件夹转化成kitti_2011_09_30_drive_0018_synced.bag。

修改LeGO-LOAM代码

utility.h

原代码中是设置为16线的,不适配KITTI数据集的64线,以及其他一些参数也需要修改,所以在原代码中修改如下:

// VLP-16
//extern const int N_SCAN = 16;
//extern const int Horizon_SCAN = 1800;
//extern const float ang_res_x = 0.2;
//extern const float ang_res_y = 2.0;
//extern const float ang_bottom = 15.0+0.1;
//extern const int groundScanInd = 7;extern const int N_SCAN = 64;
extern const int Horizon_SCAN = 2083;
extern const float ang_res_x = 360.0/float(Horizon_SCAN);
extern const float ang_res_y = 26.8/float(N_SCAN-1);
extern const float ang_bottom = 24.8;
extern const int groundScanInd = 55;

注释掉的是原来的代码,便于找到并对应。
此外,还修改imuTopic:

extern const string imuTopic = "/kitti/oxts/imu";

不过我跑的过程中发现没有imu反而效果会更好,就没有用其实。(看到别的博文说是因为KITTI数据集imu本身的问题,会飘)

imageProjection.cpp

需要在imageProjection.cpp中修改雷达topic的名字:

        subLaserCloud = nh.subscribe<sensor_msgs::PointCloud2>("/kitti/velo/pointcloud", 1, &ImageProjection::cloudHandler, this);

或者直接remap改也是一样的。

transformFusion.cpp

其实这里主要是需要生成轨迹记录文件以用于后续evo的评估,我的做法是直接用了kitti-lego-loam(链接:kitti-lego-loam)代码中保存轨迹的做法,之前在网上找的别的方法都出现了奇奇怪怪的偏差……比如:
在这里插入图片描述(挠头.gif)于是自己找了kitti-lego-loam代码里的生成轨迹部分加上去。

在transformFusion.cpp中的TransformFusion类的private变量中加上:

    int init_flag=true;Eigen::Matrix4f H;Eigen::Matrix4f H_init;Eigen::Matrix4f H_rot;const string RESULT_PATH = "/media/cairui/Backup Plus/ubuntu20/KITTI/myRes.txt";

这个RESULT_PATH就是你要生成的轨迹文件,记得自行创建并修改这个变量哦。

在laserOdometryHandler函数修改如下:

    void laserOdometryHandler(const nav_msgs::Odometry::ConstPtr& laserOdometry){currentHeader = laserOdometry->header;double roll, pitch, yaw;geometry_msgs::Quaternion geoQuat = laserOdometry->pose.pose.orientation;tf::Matrix3x3(tf::Quaternion(geoQuat.z, -geoQuat.x, -geoQuat.y, geoQuat.w)).getRPY(roll, pitch, yaw);transformSum[0] = -pitch;transformSum[1] = -yaw;transformSum[2] = roll;transformSum[3] = laserOdometry->pose.pose.position.x;transformSum[4] = laserOdometry->pose.pose.position.y;transformSum[5] = laserOdometry->pose.pose.position.z;transformAssociateToMap();geoQuat = tf::createQuaternionMsgFromRollPitchYaw(transformMapped[2], -transformMapped[0], -transformMapped[1]);laserOdometry2.header.stamp = laserOdometry->header.stamp;laserOdometry2.pose.pose.orientation.x = -geoQuat.y;laserOdometry2.pose.pose.orientation.y = -geoQuat.z;laserOdometry2.pose.pose.orientation.z = geoQuat.x;laserOdometry2.pose.pose.orientation.w = geoQuat.w;laserOdometry2.pose.pose.position.x = transformMapped[3];laserOdometry2.pose.pose.position.y = transformMapped[4];laserOdometry2.pose.pose.position.z = transformMapped[5];pubLaserOdometry2.publish(laserOdometry2);Eigen::Quaterniond q;q.w()=laserOdometry2.pose.pose.orientation.w;q.x()=laserOdometry2.pose.pose.orientation.x;q.y()=laserOdometry2.pose.pose.orientation.y;q.z()=laserOdometry2.pose.pose.orientation.z;Eigen::Matrix3d R = q.toRotationMatrix();if (init_flag==true){H_init<< R.row(0)[0],R.row(0)[1],R.row(0)[2],transformMapped[3],R.row(1)[0],R.row(1)[1],R.row(1)[2],transformMapped[4],R.row(2)[0],R.row(2)[1],R.row(2)[2],transformMapped[5],0,0,0,1;init_flag=false;std::cout<<"surf_th : "<<surfThreshold<<endl;}H_rot<<	-1,0,0,0,0,-1,0,0,0,0,1,0,0,0,0,1;H<<  R.row(0)[0],R.row(0)[1],R.row(0)[2],transformMapped[3],R.row(1)[0],R.row(1)[1],R.row(1)[2],transformMapped[4],R.row(2)[0],R.row(2)[1],R.row(2)[2],transformMapped[5],0,0,0,1;H = H_rot*H_init.inverse()*H; //to get H12 = H10*H02 , 180 rot according to z axisstd::ofstream foutC(RESULT_PATH, std::ios::app);foutC.setf(std::ios::scientific, std::ios::floatfield);foutC.precision(6);//foutC << R[0] << " "<<transformMapped[3]<<" "<< R.row(1) <<" "<<transformMapped[4] <<" "<<  R.row(2) <<" "<< transformMapped[5] << endl;for (int i = 0; i < 3; ++i){for (int j = 0; j < 4; ++j){if(i==2 && j==3){foutC <<H.row(i)[j]<< endl ;}else{foutC <<H.row(i)[j]<< " " ;}}}foutC.close();laserOdometryTrans2.stamp_ = laserOdometry->header.stamp;laserOdometryTrans2.setRotation(tf::Quaternion(-geoQuat.y, -geoQuat.z, geoQuat.x, geoQuat.w));laserOdometryTrans2.setOrigin(tf::Vector3(transformMapped[3], transformMapped[4], transformMapped[5]));tfBroadcaster2.sendTransform(laserOdometryTrans2);}

直接把整个函数复制上来了,直接替换就不会找不到要改的啦(懒鬼发言)

安装evo

先安装依赖:

pip3 install --user numpy 
pip3 install --user scipy 
pip3 install --user matplotlib

git源代码并安装:

git clone https://github.com/MichaelGrupp/evo
cd evo 
pip3 install --user --editable . --upgrade --no-binary evo

安装之后可以先测试一下自带的test:

cd test/data 
evo_traj kitti KITTI_00_ORB.txt KITTI_00_SPTAM.txt --ref=KITTI_00_gt.txt -p --plot_mode=xz

出现下图就说明安装成功了。
在这里插入图片描述

这里顺便记录一些常用的evo命令,来自知乎大佬SLAM评估工具-EVO使用(二):
①evo_traj指令可以将各个算法估计出的路径和真实路径画在同一幅图中。
例:evo_traj kitti tra1.txt tra2.txt tra3.txt --ref=ground_truth.txt -va --plot --plot_mode xy
kitti表明处理的是kitti数据集的相关结果,这里也可以替换为tum和euroc;
tra1.txt tra2.txt tra3.txt表示的是不同算法所估计出的轨迹,这里可以列举多个文件每个文件名之间用一个空格隔开;
–ref=ground_truth.txt指明参考轨迹即真实轨迹;
-va包含两部分;1.-v或–verbose指明输出文件数据的相关信息;2.-a或–align指明对轨迹进行配准;
–plot表示画图;
–plot_mode xy表示图像投影在xoy平面上,其余可选参数为:xz,yx,yz,zx,zy,xyz;

②evo_ape计算轨迹的绝对位姿误差
绝对位姿误差,用于比较估计轨迹和参考轨迹并计算整个轨迹的统计数据,常用于评估测试轨迹的全局一致性。这里还是以kitti为例,tum和euroc格式相同。
evo_ape kitti ground_truth.txt tra1.txt -r full -va --plot --plot_mode xyz --save_plot ./tra1plot --save_results ./tra1.zip
kitti表明处理的是kitti数据集的相关结果,这里也可以替换为tum和euroc;
ground_truth.txt代表真实轨迹的数据;
tra1.txt代表估计轨迹的数据;
-r full表示同时考虑旋转和平移误差得到的ape,无单位(unit-less);
另外:
-r trans_part表示考虑平移部分得到的ape,单位为m;
-r rot_part表示考虑旋转部分得到的ape,无单位(unit-less);
-r angle_deg表示考虑旋转角得到的ape,单位°(deg);
-r angle_rad表示考虑旋转角得到的ape,单位弧度(rad);
-va包含两部分;1.-v或–verbose指明输出文件数据的相关信息;2.-a或–align指明对轨迹进行配准;
–plot表示画图;
–plot_mode xy表示图像投影在xoy平面上,其余可选参数为:xz,yx,yz,zx,zy,xyz;
–save_plot ./tra1plot表示保存生成的图片,./tra1plot这里写自己保存的地址;
–save_results ./tra1.zip表示保存计算结果,./tra1.zip这里写自己保存的地址;

③evo_rpe 计算相对位姿误差
相对位姿误差不进行绝对位姿的比较,相对位姿误差比较运动(姿态增量)。相对位姿误差可以给出局部精度,例如SLAM系统每米的平移或者旋转漂移量。这里还是以kitti为例,tum和euroc格式相同。
evo_rpe kitti ground_truth.txt tra1.txt -r full -va --plot --plot_mode xyz --save_plot ./tra1plot --save_results ./tra1.zip
kitti表明处理的是kitti数据集的相关结果,这里也可以替换为tum和euroc;
ground_truth.txt代表真实轨迹的数据;
tra1.txt代表估计轨迹的数据;
-r full表示同时考虑旋转和平移误差得到的ape,无单位(unit-less);
另外:
-r trans_part表示考虑平移部分得到的ape,单位为m;
-r rot_part表示考虑旋转部分得到的ape,无单位(unit-less);
-r angle_deg表示考虑旋转角得到的ape,单位°(deg);
-r angle_rad表示考虑旋转角得到的ape,单位弧度(rad);
-va包含两部分;
1.-v或–verbose指明输出文件数据的相关信息;2.-a或–align指明对轨迹进行配准;
–plot表示画图;
–plot_mode xy表示图像投影在xoy平面上,其余可选参数为:xz,yx,yz,zx,zy,xyz;
–save_plot ./tra1plot表示保存生成的图片,./tra1plot这里写自己保存的地址;
–save_results ./tra1.zip表示保存计算结果,./tra1.zip这里写自己保存的地址;

最终结果

我用的是09数据集,也就是kitti_2011_09_30_drive_0033_synced.bag,跑完之后把生成的myRes.txt与之前我们下的odometry ground truth poses 解压出来的09.txt拷贝到同个文件夹下,然后运行:

evo_traj kitti myRes.txt --ref=09.txt -p --plot_mode=xz

得到:
在这里插入图片描述就成功啦,吃饭去了:D

这篇关于如何使用evo工具评估LeGO-LOAM跑KITTI数据集的结果的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/164374

相关文章

java图像识别工具类(ImageRecognitionUtils)使用实例详解

《java图像识别工具类(ImageRecognitionUtils)使用实例详解》:本文主要介绍如何在Java中使用OpenCV进行图像识别,包括图像加载、预处理、分类、人脸检测和特征提取等步骤... 目录前言1. 图像识别的背景与作用2. 设计目标3. 项目依赖4. 设计与实现 ImageRecogni

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

Mysql虚拟列的使用场景

《Mysql虚拟列的使用场景》MySQL虚拟列是一种在查询时动态生成的特殊列,它不占用存储空间,可以提高查询效率和数据处理便利性,本文给大家介绍Mysql虚拟列的相关知识,感兴趣的朋友一起看看吧... 目录1. 介绍mysql虚拟列1.1 定义和作用1.2 虚拟列与普通列的区别2. MySQL虚拟列的类型2

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

关于@MapperScan和@ComponentScan的使用问题

《关于@MapperScan和@ComponentScan的使用问题》文章介绍了在使用`@MapperScan`和`@ComponentScan`时可能会遇到的包扫描冲突问题,并提供了解决方法,同时,... 目录@MapperScan和@ComponentScan的使用问题报错如下原因解决办法课外拓展总结@

mysql数据库分区的使用

《mysql数据库分区的使用》MySQL分区技术通过将大表分割成多个较小片段,提高查询性能、管理效率和数据存储效率,本文就来介绍一下mysql数据库分区的使用,感兴趣的可以了解一下... 目录【一】分区的基本概念【1】物理存储与逻辑分割【2】查询性能提升【3】数据管理与维护【4】扩展性与并行处理【二】分区的

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,