机器人建图算法2.1从栅格占据地图到ESDF地图

2023-10-07 00:30

本文主要是介绍机器人建图算法2.1从栅格占据地图到ESDF地图,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

机器人建图算法2.1从栅格占据地图到ESDF地图

  • 前言
  • 论文解读
    • 示意图说明
    • 伪代码说明
    • 算法流程
  • 总结

前言

最基础的地图是占据栅格地图Occupancy map,每个格子标明了该位置是否被物体占据。然而对于规划和避障而言,地图中的占据信息是不够的,还需要障碍距离、方向等信息。TSDF和ESDF地图弥补了这个缺陷。

IROS 2010: Improved updating of Euclidean distance maps and Voronoi diagrams 这篇论文提供了一种从Occupancy Map更新ESDF地图的方法。

论文解读

这篇文章实际上要解决通过occupancy map生成ESDF和voronoi graph两个问题,但这里只解读与ESDF相关的内容。

文章Part.Ⅲ 描述了生成ESDF的算法流程,伪代码如下:
在这里插入图片描述

并且给出了一个示意图:
在这里插入图片描述

示意图说明

ABCD四幅图中网格grids的深浅表明了与最近障碍物之间的距离(其实就是ESDF),纯黑色的grid说明该位置是障碍物。

  • A图是ESDF的原始状态
  • B图中,A图左方的障碍物被去除,A图右方放置了一个新的障碍物。新障碍物附近的grids获得lower状态并向外传播,旧障碍物附近的grids获得raise状态并向外传播。
  • C图中,新障碍物附近稍远的少量grids继续传播lower状态,而多数grids不再传播lower状态。旧障碍物附近稍远的grids获得了lower状态,并向旧障碍物方向传播。
  • D图中,新障碍物附近稍远的grids不再传播lower状态。旧障碍物向内传播lower状态达到中心后也停止了传播。

raise和lower的意思是向上,也就是(最近障碍物)距离增加和减少。显而易见,从每个grid的ESDF是通过距离的增减状态传播进行更新的。

将这个示意图与伪代码放在一起看能够加速算法理解。

伪代码说明

Algorithm 1给出了算法的伪代码,首先给出几个定义:

o b s t s obst_s obsts : 与网格s距离最近的障碍物
d i s t s dist_s dists : s与距离最近的障碍物的距离值
t o R a i s e s toRaise_s toRaises : s是否要获得并传播raise状态
i n s e r t ( o p e n , n , d i s t n ) insert(open, n, dist_n) insert(open,n,distn) : 将n与 d i s t n dist_n distn插入open表中
C l e a r C e l l ( s ) ClearCell(s) ClearCell(s) o b s t s = c l e a r e d , d i s t s = ∞ obst_s=cleared, dist_s=\infty obsts=cleared,dists=
i s O c c ( s ) isOcc(s) isOcc(s) o b s t s = = s ∣ ∣ d i s t s = = 0 , T r u e obst_s==s ||dist_s==0, True obsts==sdists==0,True
p o p ( o p e n ) pop(open) pop(open) : 返回open表中距离最小的s

然后解释几个函数的用途
SetObstacle(s):在s上放置一个新的新障碍物(也就是观测到s的occupancy变成了1),将s放入open表中

RemoveObstacle(s):把s上的障碍物去除,将s放入open表中

UpdateDistanceMap():open表不为空时,取出一个距离最小的s,如果s具有raise状态,那就传播raise。否则如果s是个障碍物,那就传播lower。

raise(s):对于s附近8邻域每个grid n,如果n最近的障碍不是cleared(这里是说location)并且不在raise状态,那么把n放入open表中,并且如果n最近的障碍没有被占据(这里是说location的occupancy),那么先将grid n clear并获得raise状态再放入open表。最后取消s的raise状态。

lower(s):对于s附近8邻域每个grid n,如果n不在raise状态,就计算n与距离s最近的障碍物的距离d,如果d小于之前n与距离n最近障碍物的距离,那么更新 o b s t n = o b s t s obst_n=obst_s obstn=obsts d i s t n = d dist_n=d distn=d并将n放入open表中。

算法流程

下面解释伪代码和示意图给出的算法流程:

  1. 通过occupancy map初始化地图,记录每个grid的obst和dist。
  2. 在grid s加入或删除障碍物时都会将s放入open表中优先处理,加入障碍物时s的dist变0,obst变s,在删除障碍物时s的dist变无穷,obst被clear,并获得raise状态。
  3. 优先更新加入或删除障碍的grid,加入grid进行lower,删除grid先raise再lower。
  4. 所谓lower,就是对于那些不在raise中的相邻grid n,如果更新时和父传播点的障碍物的距离比与更新前自身的障碍物距离小,那就更新n的障碍物,并且把这个状态传给子传播点(也就是说,如果父节点的最近障碍物改变了,那么子节点的最近障碍物也很有可能会改变)。
  5. 所谓raise,就是说如果父节点处于raise状态,子节点的最近障碍物被删除了,那么子节点就要rest自己的dist和obst并传播raise状态

总结

一句话概括:raise决定删除障碍物时影响grid的范围,lower决定更新后的grid ESDF值。

这篇关于机器人建图算法2.1从栅格占据地图到ESDF地图的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/154915

相关文章

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

使用Folium在Python中进行地图可视化的操作指南

《使用Folium在Python中进行地图可视化的操作指南》在数据分析和可视化领域,地图可视化是一项非常重要的技能,它能够帮助我们更直观地理解和展示地理空间数据,Folium是一个基于Python的地... 目录引言一、Folium简介与安装1. Folium简介2. 安装Folium二、基础使用1. 创建

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

2.1/5.1和7.1声道系统有什么区别? 音频声道的专业知识科普

《2.1/5.1和7.1声道系统有什么区别?音频声道的专业知识科普》当设置环绕声系统时,会遇到2.1、5.1、7.1、7.1.2、9.1等数字,当一遍又一遍地看到它们时,可能想知道它们是什... 想要把智能电视自带的音响升级成专业级的家庭影院系统吗?那么你将面临一个重要的选择——使用 2.1、5.1 还是

利用Python编写一个简单的聊天机器人

《利用Python编写一个简单的聊天机器人》这篇文章主要为大家详细介绍了如何利用Python编写一个简单的聊天机器人,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 使用 python 编写一个简单的聊天机器人可以从最基础的逻辑开始,然后逐步加入更复杂的功能。这里我们将先实现一个简单的

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1