Open X-Embodiment Robotic Learning Datasets and RT-X Models

2023-10-06 04:15

本文主要是介绍Open X-Embodiment Robotic Learning Datasets and RT-X Models,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 简介
  • 论文链接
  • 项目链接
  • Reference

在这里插入图片描述

简介

为什么机器人技术远远落后于 NLP、视觉和其他 AI 领域?除其他困难外,数据短缺是罪魁祸首。谷歌 DeepMind 联合其他机构推出了 Open X-Embodiment 数据集,并训练出了能力更强的 RT-X 模型

在这里插入图片描述

在这里插入图片描述

DeepMind 在过去一段时间汇集了来自 22 种不同机器人类型的数据,以创建 Open X-Embodiment 数据集,然后在之前的模型(RT-1 和 RT-2)的基础上,训练出了能力更强的 RT-X(分别为 RT-1-X 和 RT-2-X)。

他们在五个不同的研究实验室测试了 RT-1-X 模型,结果显示,与针对每个机器人独立开发的方法相比,新方法在五种不同的常用机器人中平均成功率提高了 50%。他们还表明,在上述数据集上训练的 RT-2-X 在现实世界机器人技能上的表现提高了 2 倍,而且,通过学习新数据,RT-2-X 掌握了很多新技能。这项工作表明,在来自多个机器人类型数据上训练的单个模型比在来自单个机器人类型数据上训练的模型在多个机器人上的性能要好得多。

目前,Open X-Embodiment 数据集和 RT-1-X 模型检查点已经对广泛的研究社区开放。

论文链接

https://robotics-transformer-x.github.io/paper.pdf

项目链接

https://robotics-transformer-x.github.io/

Reference

https://www.deepmind.com/blog/scaling-up-learning-across-many-different-robot-types

这篇关于Open X-Embodiment Robotic Learning Datasets and RT-X Models的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/152801

相关文章

论文翻译:arxiv-2024 Benchmark Data Contamination of Large Language Models: A Survey

Benchmark Data Contamination of Large Language Models: A Survey https://arxiv.org/abs/2406.04244 大规模语言模型的基准数据污染:一项综述 文章目录 大规模语言模型的基准数据污染:一项综述摘要1 引言 摘要 大规模语言模型(LLMs),如GPT-4、Claude-3和Gemini的快

论文翻译:ICLR-2024 PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS

PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS https://openreview.net/forum?id=KS8mIvetg2 验证测试集污染在黑盒语言模型中 文章目录 验证测试集污染在黑盒语言模型中摘要1 引言 摘要 大型语言模型是在大量互联网数据上训练的,这引发了人们的担忧和猜测,即它们可能已

Open a folder or workspace... (File -> Open Folder)

问题:vscode Open with Live Server 时 显示Open a folder or workspace... (File -> Open Folder)报错 解决:不可以单独打开文件1.html ; 需要在文件夹里打开 像这样

android java.io.IOException: open failed: ENOENT (No such file or directory)-api23+权限受权

问题描述 在安卓上,清单明明已经受权了读写文件权限,但偏偏就是创建不了目录和文件 调用mkdirs()总是返回false. <uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/><uses-permission android:name="android.permission.READ_E

速通GPT-3:Language Models are Few-Shot Learners全文解读

文章目录 论文实验总览1. 任务设置与测试策略2. 任务类别3. 关键实验结果4. 数据污染与实验局限性5. 总结与贡献 Abstract1. 概括2. 具体分析3. 摘要全文翻译4. 为什么不需要梯度更新或微调⭐ Introduction1. 概括2. 具体分析3. 进一步分析 Approach1. 概括2. 具体分析3. 进一步分析 Results1. 概括2. 具体分析2.1 语言模型

简单的Q-learning|小明的一维世界(3)

简单的Q-learning|小明的一维世界(1) 简单的Q-learning|小明的一维世界(2) 一维的加速度世界 这个世界,小明只能控制自己的加速度,并且只能对加速度进行如下三种操作:增加1、减少1、或者不变。所以行动空间为: { u 1 = − 1 , u 2 = 0 , u 3 = 1 } \{u_1=-1, u_2=0, u_3=1\} {u1​=−1,u2​=0,u3​=1}

简单的Q-learning|小明的一维世界(2)

上篇介绍了小明的一维世界模型 、Q-learning的状态空间、行动空间、奖励函数、Q-table、Q table更新公式、以及从Q值导出策略的公式等。最后给出最简单的一维位置世界的Q-learning例子,从给出其状态空间、行动空间、以及稠密与稀疏两种奖励函数的设置方式。下面将继续深入,GO! 一维的速度世界 这个世界,小明只能控制自己的速度,并且只能对速度进行如下三种操作:增加1、减

RT-Thread(Nano版本)的快速移植(基于NUCLEO-F446RE)

目录 概述 1 RT-Thread 1.1 RT-Thread的版本  1.2 认识Nano版本 2 STM32F446U上移植RT-Thread  2.1 STM32Cube创建工程 2.2 移植RT-Thread 2.2.1 安装RT-Thread Packet  2.2.2 加载RT-Thread 2.2.3 匹配相关接口 2.2.3.1 初次编译代码  2.2.3.

Open-Sora代码详细解读(1):解读DiT结构

Diffusion Models专栏文章汇总:入门与实战 前言:目前开源的DiT视频生成模型不是很多,Open-Sora是开发者生态最好的一个,涵盖了DiT、时空DiT、3D VAE、Rectified Flow、因果卷积等Diffusion视频生成的经典知识点。本篇博客从Open-Sora的代码出发,深入解读背后的原理。 目录 DiT相比于Unet的关键改进点 Token化方

error while loading shared libraries: libnuma.so.1: cannot open shared object file:

腾讯云CentOS,安装Mysql时: 1.yum remove libnuma.so.1 2.yum install numactl.x86_64