RT-Thread(Nano版本)的快速移植(基于NUCLEO-F446RE)

2024-09-08 04:28

本文主要是介绍RT-Thread(Nano版本)的快速移植(基于NUCLEO-F446RE),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

概述

1 RT-Thread

1.1 RT-Thread的版本

 1.2 认识Nano版本

2 STM32F446U上移植RT-Thread 

2.1 STM32Cube创建工程

2.2 移植RT-Thread

2.2.1 安装RT-Thread Packet

 2.2.2 加载RT-Thread

2.2.3 匹配相关接口

2.2.3.1 初次编译代码

 2.2.3.2 匹配端口

 2.2.4 移植FinSH 接口

2.2.5 Tick函数调用

3 测试

3.1 使用STM32Cube重新生成Project

3.2 RT-Thread时钟参数配置

 3.3 编写测试函数

4 运行代码的问题


概述

本文主要介绍RT-Thread Nano版本在NUCLEO-F446RE上的移植方法,包括RT-Thread的版本信息,各个版本的差异,Keil下RT-Thread的安装,以及结合STM32Cube创建工程的方法。文中还详细记录了修改代码的内容和修改方法。还编写具体的案例验证代码是否能正常工作。

1 RT-Thread

1.1 RT-Thread的版本

打开RT-Thread的文档地址,可以看见,RT-Thread提供了3个版本可供开发者使用,其包括;: 标准版本, Nano版本, Smart 版本

标准版本:

RT-Thread不仅仅是一个实时内核,还具备丰富的中间层组件

Nano版本

RT-Thread Nano 是一个极简版的硬实时内核,它是由 C 语言开发,采用面向对象的编程思维,具有良好的代码风格,是一款可裁剪的、抢占式实时多任务的 RTOS。其内存资源占用极小,功能包括任务处理、软件定时器、信号量、邮箱和实时调度等相对完整的实时操作系统特性。适用于家电、消费电子、医疗设备、工控等领域大量使用的 32 位 ARM 入门级 MCU 的场合。

 Smart版本

RT-Thread Smart 是基于 RT-Thread 操作系统上的混合操作系统,简称为 rt-smart,它把应用从内核中独立出来,形成独立的用户态应用程序,并具备独立的地址空间(32 位系统上是 4G 的独立地址空间)。

 1.2 认识Nano版本

RT-Thread Nano 是一个简洁的版本,对于MCU资源不太丰富的系统,非常实用。该版本也已经集成到Keil和STM32Cube软件上,对开发者非常友好。

  • 易裁剪:Nano 的配置文件为 rtconfig.h,该文件中列出了内核中的所有宏定义,有些默认没有打开,如需使用,打开即可。
  • 易添加 FinSH 组件:FinSH 组件 可以很方便的在 Nano 上进行移植,而不再依赖 device 框架,只需修改相关的函数接口内容,就可以支持FinSH功能。
  • 自选驱动库:可以使用厂商提供的固件驱动库,如 ST 的 STD 库、HAL 库、LL 库等,可以自行选择。
  • 完善的文档:包含 内核基础、线程管理 (例程)、时钟管理 (例程)、线程间同步 (例程)、线程间通信 (例程)、内存管理 (例程)、中断管理,以及 Nano 版块的移植教程。

2 STM32F446U上移植RT-Thread 

2.1 STM32Cube创建工程

打开STM2Cube,选择NUCLEO-F446RE创建项目

点击板卡信息,STM32Cube会自动配置外围资源

 创建项目完成后,使用Keil打开项目文件,其文件架构如下:

2.2 移植RT-Thread

2.2.1 安装RT-Thread Packet

在Keil上安装RT-Thread的packet,建议手动安装。

手动安装RT-thead 方法:

step -1:   登录该网址

https://www.rt-thread.org/document/site/#/rt-thread-version/rt-thread-nano/nano-port-keil/an0039-nano-port-keil

step -2:   下载packet

在Keil上自动安装pcket的方法,安装过程会很慢(一般很难成功,建议手动安装) 

 2.2.2 加载RT-Thread

添加下面图标,加载RT-Thread的packet

加载完成软件包后,会在代码架构中看见如下内容

2.2.3 匹配相关接口

2.2.3.1 初次编译代码

初次编译代码,编译并不能成功,如下提示告诉开发者,这些介接口需要被编写。

 2.2.3.2 匹配端口

ERROR -1:

RTE/RTOS/board.c(47): error:  #35: #error directive: "TODO 1: OS Tick Configuration."
  #error "TODO 1: OS Tick Configuration."
RTE/RTOS/board.c: 0 warnings, 1 error

修正方法:

该error提示,在该函数中添加MCU时钟的初始化函数,其主要用于RT-Thread的TICK

修正方法:在void rt_hw_board_init(void)函数中添加如下函数:

void rt_hw_board_init(void)
{
// #error "TODO 1: OS Tick Configuration."/* * TODO 1: OS Tick Configuration* Enable the hardware timer and call the rt_os_tick_callback function* periodically with the frequency RT_TICK_PER_SECOND. *//* 1、系统、时钟初始化 */HAL_Init(); // 初始化 HAL 库SystemClock_Config(); // 配置系统时钟SystemCoreClockUpdate(); // 对系统时钟进行更新/* 2、OS Tick 频率配置,RT_TICK_PER_SECOND = 1000 表示 1ms 触发一次中断 */SysTick_Config(SystemCoreClock / RT_TICK_PER_SECOND);/* Call components board initial (use INIT_BOARD_EXPORT()) */
#ifdef RT_USING_COMPONENTS_INITrt_components_board_init();
#endif#if defined(RT_USING_USER_MAIN) && defined(RT_USING_HEAP)rt_system_heap_init(rt_heap_begin_get(), rt_heap_end_get());
#endif
}

具体代码位置如下:

 ERROR -2: 

compiling finsh_port.c...
RTE/RTOS/finsh_port.c(14): error:  #35: #error directive: Please uncomment the line <#include "finsh_config.h"> in the rtconfig.h 
  #error Please uncomment the line <#include "finsh_config.h"> in the rtconfig.h 
RTE/RTOS/finsh_port.c: 0 warnings, 1 error

修正方法:

在rtconfig.h文件中使能finsh_config.h头文件

 ERROR -3:  

RTE/RTOS/finsh_port.c(24): error:  #35: #error directive: "TODO 4: Read a char from the uart and assign it to 'ch'."
  #error "TODO 4: Read a char from the uart and assign it to 'ch'."
RTE/RTOS/finsh_port.c: 0 warnings, 1 error

修正方法:在finshport.c中添加串口读取函数,具体代码如下:

RT_WEAK char rt_hw_console_getchar(void)
{/* Note: the initial value of ch must < 0 */int ch = -1;//#error "TODO 4: Read a char from the uart and assign it to 'ch'."if (__HAL_UART_GET_FLAG(&huart2, UART_FLAG_RXNE) != RESET){ch = huart2.Instance->DR & 0xff;}else{if(__HAL_UART_GET_FLAG(&huart2, UART_FLAG_ORE) != RESET){__HAL_UART_CLEAR_OREFLAG(&huart2);}rt_thread_mdelay(10);}return ch;
}

 函数具体位置:

  ERROR -4:  

RT_Thread_F446RU_Proj\RT_Thread_F446RU_Proj.axf: Error: L6200E: Symbol HardFault_Handler multiply defined (by context_rvds.o and stm32f4xx_it.o).
RT_Thread_F446RU_Proj\RT_Thread_F446RU_Proj.axf: Error: L6200E: Symbol PendSV_Handler multiply defined (by context_rvds.o and stm32f4xx_it.o).

Not enough information to list image symbols.
Not enough information to list load addresses in the image map.

 修正方法:取消如下两项,不使其生成函数

 2.2.4 移植FinSH 接口

初始状态下FinSH接口是被disable

 在rtconfig.h文件中能如下选项

 在board.c函数完善如下函数

源代码如下:

#ifdef RT_USING_CONSOLEstatic int uart_init(void)
{
//#error "TODO 2: Enable the hardware uart and config baudrate."MX_USART2_UART_Init();return 0;
}
INIT_BOARD_EXPORT(uart_init);void rt_hw_console_output(const char *str)
{
//#error "TODO 3: Output the string 'str' through the uart."rt_size_t i = 0, size = 0;char a = '\r';__HAL_UNLOCK(&huart2);size = rt_strlen(str);for (i = 0; i < size; i++){if (*(str + i) == '\n'){HAL_UART_Transmit(&huart2, (uint8_t *)&a, 1, 1);}HAL_UART_Transmit(&huart2, (uint8_t *)(str + i), 1, 1);}
}#endif

2.2.5 Tick函数调用

在stm32的SysTick_Handler()中调用rt_os_tick_callback();

函数rt_os_tick_callback()实现的功能:

void rt_os_tick_callback(void)
{rt_interrupt_enter();rt_tick_increase();rt_interrupt_leave();
}

3 测试

3.1 使用STM32Cube重新生成Project

使用STM32Cube生成Project,此时不用生产main函数,生成项目后,在代码中重写main()

重写的main函数如下:

3.2 RT-Thread时钟参数配置

 系统时钟配置,MCU的工作频率配置为180M Hz

在如下文件中配置Tick计数

 3.3 编写测试函数

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
int main(void)
{MX_GPIO_Init();while (1){rt_thread_mdelay(1000);HAL_GPIO_TogglePin(LD2_GPIO_Port, LD2_Pin);}/* USER CODE END 3 */
}
/* USER CODE END 0 */

添加断点,快速运行代码

4 运行代码的问题

Issue -1: 打印的log不全

解决方法:延长发送数据的Timeout时间

#ifdef RT_USING_CONSOLEstatic int uart_init(void)
{//#error "TODO 2: Enable the hardware uart and config baudrate."MX_USART2_UART_Init();MX_USART1_UART_Init();return 0;
}
INIT_BOARD_EXPORT(uart_init);void rt_hw_console_output(const char *str)
{//#error "TODO 3: Output the string 'str' through the uart."rt_size_t i = 0, size = 0;char a = '\r';__HAL_UNLOCK(&huart1);size = rt_strlen(str);for (i = 0; i < size; i++){if (*(str + i) == '\n'){HAL_UART_Transmit(&huart1, (uint8_t *)&a, 1, 1000);}HAL_UART_Transmit(&huart1, (uint8_t *)(str + i), 1, 1000);}
}#endif

这篇关于RT-Thread(Nano版本)的快速移植(基于NUCLEO-F446RE)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1147111

相关文章

利用Python快速搭建Markdown笔记发布系统

《利用Python快速搭建Markdown笔记发布系统》这篇文章主要为大家详细介绍了使用Python生态的成熟工具,在30分钟内搭建一个支持Markdown渲染、分类标签、全文搜索的私有化知识发布系统... 目录引言:为什么要自建知识博客一、技术选型:极简主义开发栈二、系统架构设计三、核心代码实现(分步解析

浅谈配置MMCV环境,解决报错,版本不匹配问题

《浅谈配置MMCV环境,解决报错,版本不匹配问题》:本文主要介绍浅谈配置MMCV环境,解决报错,版本不匹配问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录配置MMCV环境,解决报错,版本不匹配错误示例正确示例总结配置MMCV环境,解决报错,版本不匹配在col

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Linux卸载自带jdk并安装新jdk版本的图文教程

《Linux卸载自带jdk并安装新jdk版本的图文教程》在Linux系统中,有时需要卸载预装的OpenJDK并安装特定版本的JDK,例如JDK1.8,所以本文给大家详细介绍了Linux卸载自带jdk并... 目录Ⅰ、卸载自带jdkⅡ、安装新版jdkⅠ、卸载自带jdk1、输入命令查看旧jdkrpm -qa

Tomcat版本与Java版本的关系及说明

《Tomcat版本与Java版本的关系及说明》:本文主要介绍Tomcat版本与Java版本的关系及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Tomcat版本与Java版本的关系Tomcat历史版本对应的Java版本Tomcat支持哪些版本的pythonJ

springboot security快速使用示例详解

《springbootsecurity快速使用示例详解》:本文主要介绍springbootsecurity快速使用示例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录创www.chinasem.cn建spring boot项目生成脚手架配置依赖接口示例代码项目结构启用s

IDEA中Git版本回退的两种实现方案

《IDEA中Git版本回退的两种实现方案》作为开发者,代码版本回退是日常高频操作,IntelliJIDEA集成了强大的Git工具链,但面对reset和revert两种核心回退方案,许多开发者仍存在选择... 目录一、版本回退前置知识二、Reset方案:整体改写历史1、IDEA图形化操作(推荐)1.1、查看提

JDK多版本共存并自由切换的操作指南(本文为JDK8和JDK17)

《JDK多版本共存并自由切换的操作指南(本文为JDK8和JDK17)》本文介绍了如何在Windows系统上配置多版本JDK(以JDK8和JDK17为例),并通过图文结合的方式给大家讲解了详细步骤,具有... 目录第一步 下载安装JDK第二步 配置环境变量第三步 切换JDK版本并验证可能遇到的问题前提:公司常

nvm如何切换与管理node版本

《nvm如何切换与管理node版本》:本文主要介绍nvm如何切换与管理node版本问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录nvm切换与管理node版本nvm安装nvm常用命令总结nvm切换与管理node版本nvm适用于多项目同时开发,然后项目适配no

C++快速排序超详细讲解

《C++快速排序超详细讲解》快速排序是一种高效的排序算法,通过分治法将数组划分为两部分,递归排序,直到整个数组有序,通过代码解析和示例,详细解释了快速排序的工作原理和实现过程,需要的朋友可以参考下... 目录一、快速排序原理二、快速排序标准代码三、代码解析四、使用while循环的快速排序1.代码代码1.由快