本文主要是介绍OpenGL ES 2.0渲染管线,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
http://codingnow.cn/opengles/1504.html
Opengl es 2.0实现了可编程的图形管线,比起1.x的固定管线要复杂和灵活很多,由两部分规范组成:Opengl es 2.0 API规范和Opengl es着色语言规范。下图是Opengl es 2.0渲染管线,阴影部分是opengl es 2.0的可编程阶段。
下面是一个用opengl es着色器语言编写的顶点着色器源码,这个顶点着色器使用一个position和跟它相关联的color数据作为输入数据,通过一个4×4矩阵变换位置,然后输出变换后的位置和颜色数据。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | 1. // uniforms used by the vertex shader 2. uniform mat4 u_mvpMatrix; // matrix to convert P from model 3. // space to normalized device space. 4. 5. // attributes input to the vertex shader 6. attribute vec4 a_position; // position value 7. attribute vec4 a_color; // input vertex color 8. 9. // varying variables – input to the fragment shader 10. varying vec4 v_color; // output vertex color 11. 12. void 13. main() 14. { 15. v_color = a_color; 16. gl_Position = u_mvpMatrix * a_position; 17. } |
第2行代码定义了一个uniform变量u_mvpMatrix,mat4表示4×4浮点数矩阵,该变量存储了组合模型视图和投影矩阵。6和7行代码定义了顶点着色器的输入数据:Attributes,vec4表示包含了4个浮点数的向量,a_position是顶点位置属性,a_color是顶点颜色属性。第10行代码定义了varying类型的变量v_color,varying是用于从顶点着色器传递到片元着色器的变量,v_color是顶点着色器的输出数据,存储了每个顶点的颜色。12-17行的main函数是顶点着色器和片元着色器的入口,第15行读取了顶点着色器输入属性中a_color的值,并把它赋值给输出数据v_color,第16行的gl_Position 是内置的varying变量,不需要声明,顶点着色器必须把变换后的位置赋值给它。
2.图元装配(Primitive Assembly)
顶点着色器之后,渲染流水线的下一个阶段是图元装配,图元是一个能用opengl es绘图命令绘制的几何体,绘图命令指定了一组顶点属性,描述了图元的几何形状和图元类型。顶点着色器使用这些顶点属性计算顶点的位置、颜色以及纹理坐标,这样才能传到片元着色器。在图元装配阶段,这些着色器处理过的顶点被组装到一个个独立的几何图元中,例如三角形、线、点精灵。对于每个图元,必须确定它是否位于视椎体内(3维空间显示在屏幕上的可见区域),如果图元部分在视椎体中,需要进行裁剪,如果图元全部在视椎体外,则直接丢弃图元。裁剪之后,顶点位置转换成了屏幕坐标。背面剔除操作也会执行,它根据图元是正面还是背面,如果是背面则丢弃该图元。经过裁剪和背面剔除操作后,就进入渲染流水线的下一个阶段:光栅化。
3. 光栅化(Rasterization)
光栅化阶段把图元转换成片元集合,之后会提交给片元着色器处理,这些片元集合表示可以被绘制到屏幕的像素。如下图所示:
下面是一个简单的片元着色器源码,可以跟上面的顶点着色器源码结合绘制一个高洛德着色的三角形。
1 2 3 4 5 6 7 8 9 10 | 1. precision mediump float ; 2. 3. varying vec4 v_color; // input vertex color from vertex shader 4. 5. 6. void 7. main( void ) 8. { 9. gl_FragColor = v_color; 10.} |
第1行代码设置默认的精度修饰符,有highp、mediump、lowp,这个后面再详细解释。第3行代码定义了片元着色器的输入数据,顶点着色器必须赋值给片元着色器一组一样的varying变量。注意:gl_FragColor是片元着色器唯一的输出,第9行代码把输入数据v_color赋值给gl_FragColor。
5. 逐个片元操作阶段(Per-Fragment Operations)
片元着色器之后就是逐个片元操作阶段,包括一系列的测试阶段。一个光栅化阶段产生的具有屏幕坐标(Xw, Yw)的片元,只能修改framebuffer(帧缓冲)中位置在(Xw, Yw)的像素。下图是Opengl es 2.0逐片元操作的过程:
Pixel ownership test:像素所有权测试决定framebuffer中某一个(Xw, Yw)位置的像素是否属于当前Opengl ES的context,比如:如果一个Opengl ES帧缓冲窗口被其他窗口遮住了,窗口系统将决定被遮住的像素不属于当前Opengl ES的context,因此也就不会被显示。
Scissor test:裁剪测试决定位置为(Xw, Yw)的片元是否位于裁剪矩形内,如果不在,则被丢弃。
Stencil and depth tests:模板和深度测试传入片元的模板和深度值,决定是否丢弃片元。
Blending:将新产生的片元颜色值和framebuffer中某个(Xw, Yw)位置存储的颜色值进行混合。
Dithering:抖动可以用来最大限度的减少使用有限精度存储颜色值到framebuffer的工件。
逐片元操作之后,片元要么被丢弃,要么一个片元的颜色,深度或者模板值被写入到framebuffer的(Xw, Yw)位置,不过是否真的会写入还得依赖于write masks启用与否。write masks能更好的控制颜色、深度和模板值写入到合适的缓冲区。例如:颜色缓冲区中的write mask可以被设置成没有红色值写入到颜色缓冲区。另外,Opengl ES 2.0提供从framebuffer中获取像素的接口,不过需要记住的是像素只能从颜色缓冲区读回,深度和模板值不能读回。
注意:Opengl ES 2.0 的Per-Fragment Operations已经不再支持Alpha test 和 LogicOp了,这两个步骤在 OpenGL 2.0 和 OpenGL ES 1.x中是存在的。Alpha test 阶段不再需要的原因是片元着色器可以丢弃片元,所以可以在片元着色器中执行Alpha test。 LogicOp因为很少使用,所以不再支持了。
这篇关于OpenGL ES 2.0渲染管线的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!