从0开始训练基于自己声音的AI大模型(基于开源项目so-vits-svc)

2024-09-03 15:44

本文主要是介绍从0开始训练基于自己声音的AI大模型(基于开源项目so-vits-svc),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

写在前面:

本文所使用的技术栈仅为:Python

其他操作基于阿里云全套的可视化平台,只需要熟悉常规的计算机技术即可。

目录

Step 1:注册及登录阿里云主机

Step 2:找到大模型项目

Step 3:创建大模型环境实例

Step 4:进入Ai_singer教程

Step 5:环境及预训练模型下载

Step 6:训练数据准备

Step 7:数据预处理和切分配置

Step 8:生成音频特征数据

Step 9:训练

Step 10:推理

Step 11:人声与伴奏合并

结语:


准备工作:一台网速正常的电脑、Chrome浏览器

Step 1:注册及登录阿里云主机

打开阿里云官网,登录个人阿里云账号,在左侧产品目录,进入人工智能平台PAI。

1、选择左侧Notebook Gallery,这是一个基于Notebook方式的可视化平台,易于操作和二次开发。

2、在全部分类里,我们可以直接搜索开源项目so-vits-svc(也就是前段时间很火的AI孙燕姿用的模型项目)

Step 2:找到大模型项目

在搜索结果中,找对生成“AI歌手”这个项目,然后点击【在DSW中打开】。这个DSW全称是,data science workshop,类似于一个深度训练的云平台。华为云也有类似产品。

然后,会跳转到新建实例页面。也就意味着,要为这个大模型在云空间里创建一个运行实例,即,虚拟的运行环境,包括操作系统,cpu,gpu规格。这里可以直接使用推荐的配置。注意,涉及到大模型训练,一定要配置英伟达的GPU。阿里云这里会有免费3个月的试用,一般够小型模型训练。

Step 3:创建大模型环境实例

新建完成后,回到PAI平台,在左侧选择交互式建模(DSW),就可以看到创建好的实例,在操作栏,点击启动,然后会像下图这样先准备环境loading,

启动完成后就可以点击打开,直接进入DSW对应的项目,这里就是AI歌手项目(ai_singer)

点击打开后,浏览器会新开一个页面,就是DSW的工作台,里面类似于其他开发工具,左侧是目录结构,右侧是文件内容。我们接下来的操作就在这里。

Step 4:进入Ai_singer教程

我们找到 ai_singer.ipynb这个文件,里面已经用ipython(Jupyter)的方式引导我们来一步一步训练模型。但是,这个示例我们是要自己改造的,因为我们不是用示例的数据,而是用自己的数据,只有这样才能训练一个基于自己声音的大模型(也避免有什么不清楚的版权问题)。

看一下整体的步骤(目录):

Step 5:环境及预训练模型下载

跟着目录往下,把预训练模型准备和数据下载的代码点击运行:

注意:这里如果在执行过程中,少了什么组件,可以自己通过 pip 安装。

Step 6:训练数据准备

数据下载,这一步很关键。要将自己准备好的声音放上去,而不是用步骤里自带的。

注意放置的目录在:so-vits-svc/dataset_raw/

笔者这里自己创建了一个文件夹Amiao,没有用系统的C12数据。

这里插入说一下数据清洗(见ai_singer.ipynb文件中目录的附录第一点),我们要用自己的数据来训练模型,就必须准备好自己声音文件,需要进行人声伴奏抽取、音频切片。

1)人声伴奏抽取:

  • 通过自己在全民K歌录制的歌曲,用iPhone自带的快捷指令提取出歌曲为m4a格式,存入电脑。
  • 电脑安装UVR软件进行人声和伴奏分离:要两次分离,第一次分离伴奏和人声,第二次提纯人声。

2)音频切片:将分离好的纯人声以wav的格式,上传到自定义的文件夹,我这里用的是trani_data/one/这个目录。

然后修改下图中的命令,把歌曲切片存放在制定目录:

# 先把用UVR处理好的声音切片放到train_data目录下再切分。
!mkdir -p ./slice_output/one && python audio-slicer/slicer2.py ./train_data/one/xxx_vocals.wav --out ./slice_output/one --min_interval=50

切分后的音频存储在`slice_output/one`目录下。

3)数据筛选:把切片好的声音片段,拿出来播放一下,看看有没有正好切到无声的,要删掉。

4)把处理好的数据放到训练数据源的目录:demos/ai_singer/so-vits-svc/dataset_raw/Amiao/

这是我自定义的目录,没有使用官方教程的C12目录。大概准备了300条左右10s的数据,如果要效果更好,应该准备更多数据,然后声音要有高音和低音,音域要广泛一些。

Step 7:数据预处理和切分配置

这一步只需要跟着官方教程走就行,注意路径要使用我们自定义的路径。

过程中有些库要自己安装后才能正常继续下去。

Step 8:生成音频特征数据

像这类库没有安装,在运行时根据控制台报错就能判断。

这样就完成特征数据生成。

Step 9:训练

这一步就是用GPU训练大模型的关键步骤,如下图

## 训练模型默认存储在`logs/44k`目录下。模型训练时间较久,可直接使用我们准备好的模型文件直接进行推理(跳到下节推理)。训练相关配置都在配置文件`configs/config.json`中,可在配置文件中修改`epochs`、`batch_size`等。> 参数:
> - -c(--config):训练配置文件路径。可自行修改配置文件中的参数。
> - -m(--model):模型输出路径。
!cd ./so-vits-svc && python train.py -c configs/config.json -m 44k

这个模型训练时间一般要1天甚至更多时间。

Step 10:推理

在声音模型训练完成后,就可以用这个模型,加上目标音乐,进行拟合,也就是推理的过程。推理的结果就是用Ai声音唱好了一首歌。

只需要关注上图划线部分,打叉部分不用处理,因为我要用自己的推理数据(看你让AI唱什么歌就用什么歌)。

这里我选择了宇多田光的《FirstLove》这首歌,非常经典的一首歌~,还是用UVR5这个软件把这首歌进行人声伴奏分离,然后放在raw/one/目录下。

> 参数:
> - -m(--model):模型输出路径。
> - -c(--config):训练配置文件。
> - -n(--clean_names):需要推理的wav文件名列表,放在raw文件夹下。
> - -t(--trans):音高调整,支持正负(半音)。一般女转男可调整至-5~-8,男转女可调整至5~8,仅供参考,实际情况需根据人物的真实声音进行调整。
> - -s(--spk_list):合成目标说话人名称。

开始推理:注意,在44k这个目录下有好几个模型文件,一般用G开头的就行,这里模型文件有什么不一样,笔者暂时不清楚,还要翻阅官方wiki才知道。

# 这里替换为自己训练的模型,一般用G模型,路径在./logs目录下
!cd ./so-vits-svc && mkdir -p results/one && \
python inference_main.py \
-m "logs/44k/G_103200.pth" \
-c "configs/config.json" \
-n "one/1_1_tt_(Vocals)_(Vocals).wav" \
-t 0 \
-s "Amiao"

推理完成后,输出的一份纯人声数据,可以先听听看,如下图,

from IPython.display import Audio,display
sound_file = './so-vits-svc/results/one/1_1_tt_(Vocals)_(Vocals).wav_0key_Amiao_sovits_pm.flac'
display(Audio(sound_file))

Step 11:人声与伴奏合并

这是大功告成前的最后一步咯

要先安装这个库,

pip install pydub

 然后运行如下代码,注意事项在代码备注里有写了,这里再强调下,

vocal_audio是刚才推理的结果

instrumental_audio是我们分离好的宇多田光这首歌的伴奏

from pydub import AudioSegment
from IPython.display import Audio,displayvocal_audio = './so-vits-svc/results/one/1_1_FirstLove_(Vocals)_(Vocals).wav_-5key_Amiao_sovits_pm.flac'
instrumental_audio = './so-vits-svc/raw/one/1_FirstLove_(Instrumental).wav'
save_path = './so-vits-svc/results/one_Amiao.wav'sound1 = AudioSegment.from_file(instrumental_audio, format='wav')
sound2 = AudioSegment.from_file(vocal_audio, format='flac')
# sound2 += 2  # sound2音高+5
output = sound1.overlay(sound2)  # 把sound2叠加到sound1上面
# output = sound1.overlay(sound2,position=5000)  # 把sound2叠加到sound1上面,从第5秒开始叠加output.export(save_path, format="wav")  # 保存文件
print('Export successfully!')display(Audio(save_path))

结语:

好久没更新了,但是按耐不住对人工智能大模型的好奇,这个项目很简单很微小,但也是一次尝试。留下一点笔记,做个纪念。最后吐槽一下,Ai唱的好像还没有我自己唱的好

这篇关于从0开始训练基于自己声音的AI大模型(基于开源项目so-vits-svc)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1133372

相关文章

SpringBoot项目注入 traceId 追踪整个请求的日志链路(过程详解)

《SpringBoot项目注入traceId追踪整个请求的日志链路(过程详解)》本文介绍了如何在单体SpringBoot项目中通过手动实现过滤器或拦截器来注入traceId,以追踪整个请求的日志链... SpringBoot项目注入 traceId 来追踪整个请求的日志链路,有了 traceId, 我们在排

部署Vue项目到服务器后404错误的原因及解决方案

《部署Vue项目到服务器后404错误的原因及解决方案》文章介绍了Vue项目部署步骤以及404错误的解决方案,部署步骤包括构建项目、上传文件、配置Web服务器、重启Nginx和访问域名,404错误通常是... 目录一、vue项目部署步骤二、404错误原因及解决方案错误场景原因分析解决方案一、Vue项目部署步骤

Spring AI集成DeepSeek的详细步骤

《SpringAI集成DeepSeek的详细步骤》DeepSeek作为一款卓越的国产AI模型,越来越多的公司考虑在自己的应用中集成,对于Java应用来说,我们可以借助SpringAI集成DeepSe... 目录DeepSeek 介绍Spring AI 是什么?1、环境准备2、构建项目2.1、pom依赖2.2

golang内存对齐的项目实践

《golang内存对齐的项目实践》本文主要介绍了golang内存对齐的项目实践,内存对齐不仅有助于提高内存访问效率,还确保了与硬件接口的兼容性,是Go语言编程中不可忽视的重要优化手段,下面就来介绍一下... 目录一、结构体中的字段顺序与内存对齐二、内存对齐的原理与规则三、调整结构体字段顺序优化内存对齐四、内

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

配置springboot项目动静分离打包分离lib方式

《配置springboot项目动静分离打包分离lib方式》本文介绍了如何将SpringBoot工程中的静态资源和配置文件分离出来,以减少jar包大小,方便修改配置文件,通过在jar包同级目录创建co... 目录前言1、分离配置文件原理2、pom文件配置3、使用package命令打包4、总结前言默认情况下,

SpringBoot整合DeepSeek实现AI对话功能

《SpringBoot整合DeepSeek实现AI对话功能》本文介绍了如何在SpringBoot项目中整合DeepSeekAPI和本地私有化部署DeepSeekR1模型,通过SpringAI框架简化了... 目录Spring AI版本依赖整合DeepSeek API key整合本地化部署的DeepSeek

python实现简易SSL的项目实践

《python实现简易SSL的项目实践》本文主要介绍了python实现简易SSL的项目实践,包括CA.py、server.py和client.py三个模块,文中通过示例代码介绍的非常详细,对大家的学习... 目录运行环境运行前准备程序实现与流程说明运行截图代码CA.pyclient.pyserver.py参