大数据-NoSQL数据库-HBase操作框架:Phoenix【Java写的基于JDBC API的操作HBase数据库的SQL引擎框架;低延迟、事务性、可使用sql语句、提供JDBC接口】

本文主要是介绍大数据-NoSQL数据库-HBase操作框架:Phoenix【Java写的基于JDBC API的操作HBase数据库的SQL引擎框架;低延迟、事务性、可使用sql语句、提供JDBC接口】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、Phoenix概述

1、Phoenix 定义

  • Phoenix 最早是 saleforce 的一个开源项目,后来成为 Apache 的顶级项目。
  • Phoenix 构建在 HBase 之上的开源 SQL 层. 能够让我们使用标准的 JDBC API 去建表, 插入数据和查询 HBase 中的数据, 从而可以避免使用 HBase 的客户端 API.
  • 在我们的应用和 HBase 之间添加了 Phoenix, 并不会降低性能, 而且我们也少写了很多代码.

2、Phoenix 特点

  1. 将 SQl 查询编译为 HBase 扫描
  2. 确定扫描 Rowkey 的最佳开始和结束位置
  3. 扫描并行执行
  4. 将 where 子句推送到服务器端的过滤器
  5. 通过协处理器进行聚合操作
  6. 完美支持 HBase 二级索引创建
  7. DML命令以及通过DDL命令创建和操作表和版本化增量更改。
  8. 容易集成:如Spark,Hive,Pig,Flume和Map Reduce。

3、Phoenix 架构

在这里插入图片描述

4、Phoenix 数据存储

Phoenix 将 HBase 的数据模型映射到关系型世界
在这里插入图片描述

二、Phoenix安装

1、下载 Phoenix

http://archive.apache.org/dist/phoenix/apache-phoenix-4.14.2-HBase-1.3/

2、解压 jar 包到任意节点(比如:hadoop102节点)

想要在哪台服务器上使用Phoenix,就在该台服务器安装

[whx@hadoop102 soft]$ tar -zxvf apache-phoenix-4.14.2-HBase-1.3-bin.tar.gz  -C ../module/

3、修改目录名称

[whx@hadoop102 module]$ mv apache-phoenix-4.14.2-HBase-1.3-bin/  phoenix
[whx@hadoop102 module]$ ll
total 32
drwxrwxr-x.  9 whx whx 4096 Jan 31 14:45 flume
drwxr-xr-x. 11 whx whx 4096 Jan 31 10:43 hadoop-2.7.2
drwxrwxr-x.  8 whx whx 4096 Feb  2 10:48 hbase
drwxrwxr-x.  9 whx whx 4096 Jan 30 19:27 hive
drwxr-xr-x.  8 whx whx 4096 Dec 13  2016 jdk1.8.0_121
drwxr-xr-x.  8 whx whx 4096 Feb  1 16:32 kafka
drwxrwx---.  5 whx whx 4096 May 24  2019 phoenix
drwxr-xr-x. 11 whx whx 4096 Jan 29 22:01 zookeeper-3.4.10
[whx@hadoop102 module]$ 

4、复制Phoenix目录下的 jar 包到HBase目录

复制 HBase 需要用到的 server 和 client 2 个 jar 包到/ojpt/module/hbase/lib目录

[whx@hadoop102 phoenix]$ cp phoenix-4.14.2-HBase-1.3-server.jar /opt/module/hbase/lib
[whx@hadoop102 phoenix]$ cp phoenix-4.14.2-HBase-1.3-client.jar /opt/module/hbase/lib
[whx@hadoop102 phoenix]$ 

5、分发Phoenix目录到hadoop101、hadoop103节点

[whx@hadoop102 module]$ xsync.sh phoenix/

6、分发HBase里的Phoenix的 jar 包到hadoop101、hadoop103节点

需要把刚才 copy 的 2个jar 包分发到其他 HBase 节点

[whx@hadoop102 hbase]$ xsync.sh lib/

7、配置hadoop102节点环境变量

[whx@hadoop102 ~]$ vim /etc/profile
JAVA_HOME=/opt/module/jdk1.8.0_121
HADOOP_HOME=/opt/module/hadoop-2.7.2
ZOOKEEPER_HOME=/opt/module/hadoop-2.7.2
HIVE_HOME=/opt/module/hive
FLUME_HOME=/opt/module/flume
HBASE_HOME=/opt/module/hbase
PHOENIX_HOME=/opt/module/phoenix
PHOENIX_CLASSPATH=$PHOENIX_HOME
PATH=$PATH:$JAVA_HOME/bin:$HADOOP_HOME/bin:$HADOOP_HOME/sbin:$ZOOKEEPER_HOME/bin:$HIVE_HOME/bin:$FLUME_HOME/bin:$HBASE_HOME/bin:$PHOENIX_HOME/binexport PATH JAVA_HOME HADOOP_HOME ZOOKEEPER_HOME HIVE_HOME FLUME_HOME HBASE_HOME PHOENIX_HOME PHOENIX_CLASSPATH
[whx@hadoop102 ~]$ source /etc/profile

三、Phoenix的启动与停止

1、首先启动 hadoop, zookeeper, HBase

[whx@hadoop102 ~]$ start-dfs.sh
[whx@hadoop102 ~]$ xcall.sh /opt/module/zookeeper-3.4.10/bin/zkServer.sh start
[whx@hadoop102 ~]$ /opt/module/hbase/bin/start-hbase.sh

2、启动 Phoenix

[whx@hadoop102 ~]$ sqlline.py hadoop101,hadoop102,hadoop103:2181
Setting property: [incremental, false]
Setting property: [isolation, TRANSACTION_READ_COMMITTED]
issuing: !connect jdbc:phoenix:hadoop101,hadoop102,hadoop103:2181 none none org.apache.phoenix.jdbc.PhoenixDriver
Connecting to jdbc:phoenix:hadoop101,hadoop102,hadoop103:2181
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/opt/module/phoenix/phoenix-4.14.2-HBase-1.3-client.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/opt/module/hadoop-2.7.2/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
21/02/04 08:52:04 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Connected to: Phoenix (version 4.14)
Driver: PhoenixEmbeddedDriver (version 4.14)
Autocommit status: true
Transaction isolation: TRANSACTION_READ_COMMITTED
Building list of tables and columns for tab-completion (set fastconnect to true to skip)...
133/133 (100%) Done
Done
sqlline version 1.2.0
0: jdbc:phoenix:hadoop101,hadoop102,hadoop103> 

四、Phoenix的使用

1、查看所有表

0: jdbc:phoenix:hadoop101,hadoop102,hadoop103> !tables
+------------+--------------+-------------+---------------+----------+------------+----------------------------+-----------------+--------------+-+
| TABLE_CAT  | TABLE_SCHEM  | TABLE_NAME  |  TABLE_TYPE   | REMARKS  | TYPE_NAME  | SELF_REFERENCING_COL_NAME  | REF_GENERATION  | INDEX_STATE  | |
+------------+--------------+-------------+---------------+----------+------------+----------------------------+-----------------+--------------+-+
|            | SYSTEM       | CATALOG     | SYSTEM TABLE  |          |            |                            |                 |              | |
|            | SYSTEM       | FUNCTION    | SYSTEM TABLE  |          |            |                            |                 |              | |
|            | SYSTEM       | LOG         | SYSTEM TABLE  |          |            |                            |                 |              | |
|            | SYSTEM       | SEQUENCE    | SYSTEM TABLE  |          |            |                            |                 |              | |
|            | SYSTEM       | STATS       | SYSTEM TABLE  |          |            |                            |                 |              | |
+------------+--------------+-------------+---------------+----------+------------+----------------------------+-----------------+--------------+-+
0: jdbc:phoenix:hadoop101,hadoop102,hadoop103> 
  • Phoenix运行的时候,需要现在HBase数据库中创建一些Phoenix自己需要用到的一些表,比如:CATALOG 、FUNCTION、LOG、SEQUENCE、STATS
  • 其中 TABLE_SCHEM 为库名,TABLE_NAME 为表名
  • 从HBase中也能看到Phoenix新建的表
    [whx@hadoop102 ~]$ hbase shell
    SLF4J: Class path contains multiple SLF4J bindings.
    SLF4J: Found binding in [jar:file:/opt/module/hbase/lib/phoenix-4.14.2-HBase-1.3-client.jar!/org/slf4j/impl/StaticLoggerBinder.class]
    SLF4J: Found binding in [jar:file:/opt/module/hbase/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
    SLF4J: Found binding in [jar:file:/opt/module/hadoop-2.7.2/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
    SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
    HBase Shell; enter 'help<RETURN>' for list of supported commands.
    Type "exit<RETURN>" to leave the HBase Shell
    Version 1.3.1, r930b9a55528fe45d8edce7af42fef2d35e77677a, Thu Apr  6 19:36:54 PDT 2017hbase(main):001:0> list
    TABLE                                                                                                                                                                                                                                                                    
    SYSTEM.CATALOG                                                                                                                                                                                                                                                           
    SYSTEM.FUNCTION                                                                                                                                                                                                                                                          
    SYSTEM.LOG                                                                                                                                                                                                                                                               
    SYSTEM.MUTEX                                                                                                                                                                                                                                                             
    SYSTEM.SEQUENCE                                                                                                                                                                                                                                                          
    SYSTEM.STATS                                                                                                                                                                                                                                                             
    6 row(s) in 0.1220 seconds=> ["SYSTEM.CATALOG", "SYSTEM.FUNCTION", "SYSTEM.LOG", "SYSTEM.MUTEX", "SYSTEM.SEQUENCE", "SYSTEM.STATS"]
    hbase(main):002:0> 
    

2、创建表

CREATE TABLE IF NOT EXISTS us_population (state CHAR(2) NOT NULL,city VARCHAR NOT NULL,population BIGINTCONSTRAINT whx_pk PRIMARY KEY (state, city)) column_encoded_bytes=0;
  1. char类型必须添加长度限制
  2. varchar 可以不用长度限制
  3. 主键映射到 HBase 中会成为 Rowkey. 如果有多个主键(联合主键), 会把多个主键的值拼成 rowkey
  4. 在 Phoenix 中, 默认会把表名,字段名等自动转换成大写. 如果要使用消息, 需要把他们用双引号括起来.
  5. column_encoded_bytes=0 表示禁止编码
0: jdbc:phoenix:hadoop101,hadoop102,hadoop103> CREATE TABLE IF NOT EXISTS us_population (
. . . . . . . . . . . . . . . . . . . . . . .>       state CHAR(2) NOT NULL,
. . . . . . . . . . . . . . . . . . . . . . .>       city VARCHAR NOT NULL,
. . . . . . . . . . . . . . . . . . . . . . .>       population BIGINT
. . . . . . . . . . . . . . . . . . . . . . .>       CONSTRAINT whx_pk PRIMARY KEY (state, city)) 
. . . . . . . . . . . . . . . . . . . . . . .>       column_encoded_bytes=0;No rows affected (1.244 seconds)
0: jdbc:phoenix:hadoop101,hadoop102,hadoop103> !tables
+------------+--------------+----------------+---------------+----------+------------+----------------------------+-----------------+-------------+
| TABLE_CAT  | TABLE_SCHEM  |   TABLE_NAME   |  TABLE_TYPE   | REMARKS  | TYPE_NAME  | SELF_REFERENCING_COL_NAME  | REF_GENERATION  | INDEX_STATE |
+------------+--------------+----------------+---------------+----------+------------+----------------------------+-----------------+-------------+
|            | SYSTEM       | CATALOG        | SYSTEM TABLE  |          |            |                            |                 |             |
|            | SYSTEM       | FUNCTION       | SYSTEM TABLE  |          |            |                            |                 |             |
|            | SYSTEM       | LOG            | SYSTEM TABLE  |          |            |                            |                 |             |
|            | SYSTEM       | SEQUENCE       | SYSTEM TABLE  |          |            |                            |                 |             |
|            | SYSTEM       | STATS          | SYSTEM TABLE  |          |            |                            |                 |             |
|            |              | US_POPULATION  | TABLE         |          |            |                            |                 |             |
+------------+--------------+----------------+---------------+----------+------------+----------------------------+-----------------+-------------+
0: jdbc:phoenix:hadoop101,hadoop102,hadoop103> 

在HBase中查看从Phoenix新建的表 us_population

hbase(main):001:0> describe 'US_POPULATION'
Table US_POPULATION is ENABLED                                                                                                                     
US_POPULATION, {TABLE_ATTRIBUTES => {coprocessor$1 => '|org.apache.phoenix.coprocessor.ScanRegionObserver|805306366|', coprocessor$2 => '|org.apach
e.phoenix.coprocessor.UngroupedAggregateRegionObserver|805306366|', coprocessor$3 => '|org.apache.phoenix.coprocessor.GroupedAggregateRegionObserve
r|805306366|', coprocessor$4 => '|org.apache.phoenix.coprocessor.ServerCachingEndpointImpl|805306366|', coprocessor$5 => '|org.apache.phoenix.hbase
.index.Indexer|805306366|org.apache.hadoop.hbase.index.codec.class=org.apache.phoenix.index.PhoenixIndexCodec,index.builder=org.apache.phoenix.inde
x.PhoenixIndexBuilder'}                                                                                                                            
COLUMN FAMILIES DESCRIPTION                                                                                                                        
{NAME => '0', BLOOMFILTER => 'NONE', VERSIONS => '1', IN_MEMORY => 'false', KEEP_DELETED_CELLS => 'FALSE', DATA_BLOCK_ENCODING => 'FAST_DIFF', TTL 
=> 'FOREVER', COMPRESSION => 'NONE', MIN_VERSIONS => '0', BLOCKCACHE => 'true', BLOCKSIZE => '65536', REPLICATION_SCOPE => '0'}                    
1 row(s) in 0.1760 secondshbase(main):002:0> 

3、删除表

0: jdbc:phoenix:hadoop101,hadoop102,hadoop103> drop table us_population;

4、插入/更新记录(upsert,而非insert)

upsert into us_population values('NY','NewYork',8143197);
upsert into us_population values('CA','Los Angeles',3844829);
upsert into us_population values('IL','Chicago',2842518);

在Phoenix中插入记录:

0: jdbc:phoenix:hadoop101,hadoop102,hadoop103> upsert into us_population values('NY','NewYork',8143197);
1 row affected (0.027 seconds)
0: jdbc:phoenix:hadoop101,hadoop102,hadoop103> upsert into us_population values('CA','Los Angeles',3844829);
1 row affected (0.011 seconds)
0: jdbc:phoenix:hadoop101,hadoop102,hadoop103> upsert into us_population values('IL','Chicago',2842518);
1 row affected (0.006 seconds)
0: jdbc:phoenix:hadoop101,hadoop102,hadoop103> 

在Phoenix控制台查看

0: jdbc:phoenix:hadoop101,hadoop102,hadoop103> select * from us_population;
+--------+--------------+-------------+
| STATE  |     CITY     | POPULATION  |
+--------+--------------+-------------+
| CA     | Los Angeles  | 3844829     |
| IL     | Chicago      | 2842518     |
| NY     | NewYork      | 8143197     |
+--------+--------------+-------------+
3 rows selected (0.035 seconds)
0: jdbc:phoenix:hadoop101,hadoop102,hadoop103> 

在hbase控制台查看

hbase(main):002:0> scan 'US_POPULATION'
ROW                                   COLUMN+CELL                                                                                                  CALos Angeles                        column=0:POPULATION, timestamp=1612401978719, value=\x80\x00\x00\x00\x00:\xAA\xDD                            CALos Angeles                        column=0:_0, timestamp=1612401978719, value=x                                                                ILChicago                            column=0:POPULATION, timestamp=1612401979579, value=\x80\x00\x00\x00\x00+_\x96                               ILChicago                            column=0:_0, timestamp=1612401979579, value=x                                                                NYNewYork                            column=0:POPULATION, timestamp=1612401978697, value=\x80\x00\x00\x00\x00|A]                                  NYNewYork                            column=0:_0, timestamp=1612401978697, value=x                                                                
3 row(s) in 0.0530 secondshbase(main):003:0> 

5、删除记录(delete)

0: jdbc:phoenix:hadoop101,hadoop102,hadoop103> delete from us_population where state='CA' and city='Los Angeles';
1 row affected (0.01 seconds)
0: jdbc:phoenix:hadoop101,hadoop102,hadoop103> select * from us_population;
+--------+----------+-------------+
| STATE  |   CITY   | POPULATION  |
+--------+----------+-------------+
| IL     | Chicago  | 2842518     |
| NY     | NewYork  | 8143197     |
+--------+----------+-------------+
2 rows selected (0.023 seconds)
0: jdbc:phoenix:hadoop101,hadoop102,hadoop103> 

6、Phoenix 表映射HBase中的表

默认情况下, 直接在 HBase 中创建的表通过 Phoenix 是查不到的。

如果要在 Phoenix 中操作直接在 HBase 中创建的表,则需要在 Phoenix 中进行表的映射。

映射方式有两种: 1. 视图映射 2. 表映射

先在HBase数据库中创建一个测试表:whx_table

hbase(main):019:0> create 'whx_table','cf_user','cf_company'
0 row(s) in 1.2170 seconds=> Hbase::Table - whx_table
hbase(main):020:0> desc 'whx_table'
Table whx_table is ENABLED                                                                                                                         
whx_table                                                                                                                                          
COLUMN FAMILIES DESCRIPTION                                                                                                                        
{NAME => 'cf_company', BLOOMFILTER => 'ROW', VERSIONS => '1', IN_MEMORY => 'false', KEEP_DELETED_CELLS => 'FALSE', DATA_BLOCK_ENCODING => 'NONE', TTL => 'FOREVER', COMPRESSION => 'NONE', MIN_VERSIONS => '0', BLOCKCACHE => 'true', BLOCKSIZE => '65536', REPLICATION_SCOPE => '0'}                 
{NAME => 'cf_user', BLOOMFILTER => 'ROW', VERSIONS => '1', IN_MEMORY => 'false', KEEP_DELETED_CELLS => 'FALSE', DATA_BLOCK_ENCODING => 'NONE', TTL => 'FOREVER', COMPRESSION => 'NONE', MIN_VERSIONS => '0', BLOCKCACHE => 'true', BLOCKSIZE => '65536', REPLICATION_SCOPE => '0'}                    
2 row(s) in 0.0100 secondshbase(main):021:0> 

向whx_table表中插入数据

hbase(main):027:0> put 'whx_table','1001','cf_user:firstname','Nick'
0 row(s) in 0.0470 seconds
hbase(main):029:0> put 'whx_table','1001','cf_user:lastname','Lee'
0 row(s) in 0.0150 seconds
hbase(main):030:0> put 'whx_table','1001','cf_company:name','HUAWEI'
0 row(s) in 0.0140 seconds
hbase(main):031:0> put 'whx_table','1001','cf_company:address','changanjie10hao'
0 row(s) in 0.0080 seconds
hbase(main):033:0> get 'whx_table','1001'
COLUMN                                                              CELL                                                                            cf_company:address                                                 timestamp=1612408142513, value=changanjie10hao                                  cf_company:name                                                    timestamp=1612408141461, value=HUAWEI                                           cf_user:firstname                                                  timestamp=1612408054676, value=Nick                                             cf_user:lastname                                                   timestamp=1612408141421, value=Lee                                              
1 row(s) in 0.0200 secondshbase(main):034:0> 

6.1 视图映射

Phoenix 创建的视图是只读的, 所以只能用来查询, 无法通过视图对数据进行修改等操作。

在Phoenix 中 创建whx_table视图来映射HBase里的whx_table表

create view "whx_table"(
empid_pk varchar primary key,
"cf_user"."firstname" varchar,
"cf_user"."lastname" varchar,
"cf_company"."name" varchar,
"cf_company"."address" varchar);
0: jdbc:phoenix:hadoop101,hadoop102,hadoop103> !tables
+------------+--------------+----------------+---------------+----------+------------+----------------------------+-----------------+-------------+
| TABLE_CAT  | TABLE_SCHEM  |   TABLE_NAME   |  TABLE_TYPE   | REMARKS  | TYPE_NAME  | SELF_REFERENCING_COL_NAME  | REF_GENERATION  | INDEX_STATE |
+------------+--------------+----------------+---------------+----------+------------+----------------------------+-----------------+-------------+
|            | SYSTEM       | CATALOG        | SYSTEM TABLE  |          |            |                            |                 |             |
|            | SYSTEM       | FUNCTION       | SYSTEM TABLE  |          |            |                            |                 |             |
|            | SYSTEM       | LOG            | SYSTEM TABLE  |          |            |                            |                 |             |
|            | SYSTEM       | SEQUENCE       | SYSTEM TABLE  |          |            |                            |                 |             |
|            | SYSTEM       | STATS          | SYSTEM TABLE  |          |            |                            |                 |             |
|            |              | US_POPULATION  | TABLE         |          |            |                            |                 |             |
+------------+--------------+----------------+---------------+----------+------------+----------------------------+-----------------+-------------+
0: jdbc:phoenix:hadoop101,hadoop102,hadoop103> create view "whx_table"(empid_pk varchar primary key,"cf_user"."firstname" varchar,"cf_user"."lastname" varchar,"cf_company"."name" varchar,"cf_company"."address" varchar) column_encoded_bytes=0;
1 row affected (5.913 seconds)
0: jdbc:phoenix:hadoop101,hadoop102,hadoop103> !tables
+------------+--------------+----------------+---------------+----------+------------+----------------------------+-----------------+-------------+
| TABLE_CAT  | TABLE_SCHEM  |   TABLE_NAME   |  TABLE_TYPE   | REMARKS  | TYPE_NAME  | SELF_REFERENCING_COL_NAME  | REF_GENERATION  | INDEX_STATE |
+------------+--------------+----------------+---------------+----------+------------+----------------------------+-----------------+-------------+
|            | SYSTEM       | CATALOG        | SYSTEM TABLE  |          |            |                            |                 |             |
|            | SYSTEM       | FUNCTION       | SYSTEM TABLE  |          |            |                            |                 |             |
|            | SYSTEM       | LOG            | SYSTEM TABLE  |          |            |                            |                 |             |
|            | SYSTEM       | SEQUENCE       | SYSTEM TABLE  |          |            |                            |                 |             |
|            | SYSTEM       | STATS          | SYSTEM TABLE  |          |            |                            |                 |             |
|            |              | US_POPULATION  | TABLE         |          |            |                            |                 |             |
|            |              | whx_table      | VIEW          |          |            |                            |                 |             |
+------------+--------------+----------------+---------------+----------+------------+----------------------------+-----------------+-------------+
0: jdbc:phoenix:hadoop101,hadoop102,hadoop103> select * from "whx_table";
+-----------+------------+-----------+---------+------------------+
| EMPID_PK  | firstname  | lastname  |  name   |     address      |
+-----------+------------+-----------+---------+------------------+
| 1001      | Nick       | Lee       | HUAWEI  | changanjie10hao  |
+-----------+------------+-----------+---------+------------------+
1 row selected (0.075 seconds)
0: jdbc:phoenix:hadoop101,hadoop102,hadoop103> 

视图名称与表名称不能重复;如果还想在Phoenix 中 创建whx_table表来映射HBase里的whx_table表,则需要先将Phoenix 中 创建的whx_table视图删掉。

在Phoenix 中删除whx_table视图并不会影响HBase中的whx_table表

0: jdbc:phoenix:hadoop101,hadoop102,hadoop103> drop view "whx_table";
No rows affected (0.034 seconds)
0: jdbc:phoenix:hadoop101,hadoop102,hadoop103> !tables
+------------+--------------+----------------+---------------+----------+------------+----------------------------+-----------------+-------------+
| TABLE_CAT  | TABLE_SCHEM  |   TABLE_NAME   |  TABLE_TYPE   | REMARKS  | TYPE_NAME  | SELF_REFERENCING_COL_NAME  | REF_GENERATION  | INDEX_STATE |
+------------+--------------+----------------+---------------+----------+------------+----------------------------+-----------------+-------------+
|            | SYSTEM       | CATALOG        | SYSTEM TABLE  |          |            |                            |                 |             |
|            | SYSTEM       | FUNCTION       | SYSTEM TABLE  |          |            |                            |                 |             |
|            | SYSTEM       | LOG            | SYSTEM TABLE  |          |            |                            |                 |             |
|            | SYSTEM       | SEQUENCE       | SYSTEM TABLE  |          |            |                            |                 |             |
|            | SYSTEM       | STATS          | SYSTEM TABLE  |          |            |                            |                 |             |
|            |              | US_POPULATION  | TABLE         |          |            |                            |                 |             |
+------------+--------------+----------------+---------------+----------+------------+----------------------------+-----------------+-------------+
0: jdbc:phoenix:hadoop101,hadoop102,hadoop103> 

6.2 表映射

使用 Phoenix创建对 HBase 的表映射,有两种方法:

  1. 当 HBase 中已经存在表时,可以以类似创建视图的方式创建关联表,只需要将create view 改为 create table 即可。 在 HBase 中创建表:
    create table "whx_table"(empid_pk varchar primary key,"cf_user"."firstname" varchar,"cf_user"."lastname" varchar,"cf_company"."name" varchar,"cf_company"."address" varchar) column_encoded_bytes=0;
    
    0: jdbc:phoenix:hadoop101,hadoop102,hadoop103> !tables
    +------------+--------------+----------------+---------------+----------+------------+----------------------------+-----------------+-------------+
    | TABLE_CAT  | TABLE_SCHEM  |   TABLE_NAME   |  TABLE_TYPE   | REMARKS  | TYPE_NAME  | SELF_REFERENCING_COL_NAME  | REF_GENERATION  | INDEX_STATE |
    +------------+--------------+----------------+---------------+----------+------------+----------------------------+-----------------+-------------+
    |            | SYSTEM       | CATALOG        | SYSTEM TABLE  |          |            |                            |                 |             |
    |            | SYSTEM       | FUNCTION       | SYSTEM TABLE  |          |            |                            |                 |             |
    |            | SYSTEM       | LOG            | SYSTEM TABLE  |          |            |                            |                 |             |
    |            | SYSTEM       | SEQUENCE       | SYSTEM TABLE  |          |            |                            |                 |             |
    |            | SYSTEM       | STATS          | SYSTEM TABLE  |          |            |                            |                 |             |
    |            |              | US_POPULATION  | TABLE         |          |            |                            |                 |             |
    +------------+--------------+----------------+---------------+----------+------------+----------------------------+-----------------+-------------+
    0: jdbc:phoenix:hadoop101,hadoop102,hadoop103> create table "whx_table"(empid_pk varchar primary key,"cf_user"."firstname" varchar,"cf_user"."lastname" varchar,"cf_company"."name" varchar,"cf_company"."address" varchar) column_encoded_bytes=0;
    1 row affected (5.913 seconds)
    0: jdbc:phoenix:hadoop101,hadoop102,hadoop103> !tables
    +------------+--------------+----------------+---------------+----------+------------+----------------------------+-----------------+-------------+
    | TABLE_CAT  | TABLE_SCHEM  |   TABLE_NAME   |  TABLE_TYPE   | REMARKS  | TYPE_NAME  | SELF_REFERENCING_COL_NAME  | REF_GENERATION  | INDEX_STATE |
    +------------+--------------+----------------+---------------+----------+------------+----------------------------+-----------------+-------------+
    |            | SYSTEM       | CATALOG        | SYSTEM TABLE  |          |            |                            |                 |             |
    |            | SYSTEM       | FUNCTION       | SYSTEM TABLE  |          |            |                            |                 |             |
    |            | SYSTEM       | LOG            | SYSTEM TABLE  |          |            |                            |                 |             |
    |            | SYSTEM       | SEQUENCE       | SYSTEM TABLE  |          |            |                            |                 |             |
    |            | SYSTEM       | STATS          | SYSTEM TABLE  |          |            |                            |                 |             |
    |            |              | US_POPULATION  | TABLE         |          |            |                            |                 |             |
    |            |              | whx_table      | TABLE         |          |            |                            |                 |             |
    +------------+--------------+----------------+---------------+----------+------------+----------------------------+-----------------+-------------+
    0: jdbc:phoenix:hadoop101,hadoop102,hadoop103> select * from "whx_table";
    +-----------+------------+-----------+---------+------------------+
    | EMPID_PK  | firstname  | lastname  |  name   |     address      |
    +-----------+------------+-----------+---------+------------------+
    | 1001      | Nick       | Lee       | HUAWEI  | changanjie10hao  |
    +-----------+------------+-----------+---------+------------------+
    1 row selected (0.061 seconds)
    0: jdbc:phoenix:hadoop101,hadoop102,hadoop103> 
    
    说明: 添加column_encoded_bytes=0这个参数之后, 在 HBase 中添加的数据在 Phoenix 中也可以查询到. 否则 HBase 中添加的数据在 Phoenix 中查询不到.
  2. 当 HBase 中不存在表时,可以直接使用 create table 指令创建需要的表,系统将会自动在 Phoenix 和 HBase 中创建 whx_table 的表,并会根据指令内的参数对表结构进行初始化。

在Phoenix 中删除whx_table表会同时删掉HBase中的whx_table表

在Phoenix 中对whx_table表可以进行增删改查操作

  1. 插入操作:表名要用双引号来限定大小写,属性名用单引号
    0: jdbc:phoenix:hadoop101,hadoop102,hadoop103> upsert into "whx_table" values ('1002','Tom','Lee','LIANXIANG','changanjie11hao');
    1 row affected (0.03 seconds)
    0: jdbc:phoenix:hadoop101,hadoop102,hadoop103> select * from "whx_table";
    +-----------+------------+-----------+------------+------------------+
    | EMPID_PK  | firstname  | lastname  |    name    |     address      |
    +-----------+------------+-----------+------------+------------------+
    | 1001      | Nick       | Lee       | HUAWEI     | changanjie10hao  |
    | 1002      | Tom        | Lee       | LIANXIANG  | changanjie11hao  |
    +-----------+------------+-----------+------------+------------------+
    2 rows selected (0.031 seconds)
    0: jdbc:phoenix:hadoop101,hadoop102,hadoop103> 
    
  2. 删除操作:表名要用双引号来限定大小写
    0: jdbc:phoenix:hadoop101,hadoop102,hadoop103> delete from  "whx_table" where EMPID_PK='1002';
    1 row affected (0.009 seconds)
    0: jdbc:phoenix:hadoop101,hadoop102,hadoop103> select * from "whx_table";
    +-----------+------------+-----------+---------+------------------+
    | EMPID_PK  | firstname  | lastname  |  name   |     address      |
    +-----------+------------+-----------+---------+------------------+
    | 1001      | Nick       | Lee       | HUAWEI  | changanjie10hao  |
    +-----------+------------+-----------+---------+------------------+
    1 row selected (0.029 seconds)
    0: jdbc:phoenix:hadoop101,hadoop102,hadoop103> 
    

7、Phoenix 创建 HBase 二级索引

7.1 配置 HBase 支持 Phoenix 创建二级索引(在hadoop102节点)

7.1.1 修改HBase的配置文件:/opt/module/hbase/conf/hbase-site.xml
<configuration><!-- 每个regionServer的共享目录,用来持久化Hbase,默认情况下在/tmp/hbase下面 -->  <property>     <name>hbase.rootdir</name>     <value>hdfs://hadoop101:9000/HBase</value>   </property><!-- hbase集群模式,false表示hbase的单机,true表示是分布式模式 -->  <property>   <name>hbase.cluster.distributed</name><value>true</value></property><!-- hbase依赖的外部Zookeeper地址 -->  <property>    <name>hbase.zookeeper.quorum</name><value>hadoop101:2181,hadoop102:2181,hadoop103:2181</value></property><!--外部Zookeeper各个Linux服务器节点上保存数据的目录--><property>   <name>hbase.zookeeper.property.dataDir</name><value>/opt/module/zookeeper-3.4.10/datas</value></property>
</configuration>

改为:

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration><!-- 每个regionServer的共享目录,用来持久化Hbase,默认情况下在/tmp/hbase下面 -->  <property>     <name>hbase.rootdir</name>     <value>hdfs://hadoop101:9000/HBase</value>   </property><!-- hbase集群模式,false表示hbase的单机,true表示是分布式模式 -->  <property>   <name>hbase.cluster.distributed</name><value>true</value></property><!-- hbase依赖的外部Zookeeper地址:如果要配置HBase支持Phoenix创建二级索引,则不要添加端口号2181 -->  <property>    <name>hbase.zookeeper.quorum</name><value>hadoop101,hadoop102,hadoop103</value></property><!--外部Zookeeper各个Linux服务器节点上保存数据的目录--><property>   <name>hbase.zookeeper.property.dataDir</name><value>/opt/module/zookeeper-3.4.10/datas</value></property><!--配置HBase支持Phoenix创建二级索引:添加如下配置到HBase的Hmaster节点的hbase-site.xml--><property><name>hbase.master.loadbalancer.class</name><value>org.apache.phoenix.hbase.index.balancer.IndexLoadBalancer</value></property><property><name>hbase.coprocessor.master.classes</name><value>org.apache.phoenix.hbase.index.master.IndexMasterObserver</value></property><!--配置HBase支持Phoenix创建二级索引:添加如下配置到HBase的Hregionerver节点的hbase-site.xml--><property><name>hbase.regionserver.wal.codec</name><value>org.apache.hadoop.hbase.regionserver.wal.IndexedWALEditCodec</value></property><property><name>hbase.region.server.rpc.scheduler.factory.class</name><value>org.apache.hadoop.hbase.ipc.PhoenixRpcSchedulerFactory</value><description>Factory to create the Phoenix RPC Scheduler that uses separate queues for index and metadata updates</description></property><property><name>hbase.rpc.controllerfactory.class</name><value>org.apache.hadoop.hbase.ipc.controller.ServerRpcControllerFactory</value><description>Factory to create the Phoenix RPC Scheduler that uses separate queues for index and metadata updates</description></property>
</configuration>
7.1.2 在hadoop102节点上分发/opt/module/hbase/conf/hbase-site.xml
[whx@hadoop102 conf]$ xsync.sh hbase-site.xml 
7.1.3 重启HBase、Phoenix

7.2 测试索引

7.2.1 没创建索引时:
0: jdbc:phoenix:hadoop101,hadoop102,hadoop103> explain select "firstname" from "whx_table" where "firstname"='Nick';
+---------------------------------------------------------------------+-----------------+----------------+--------------+
|                                PLAN                                 | EST_BYTES_READ  | EST_ROWS_READ  | EST_INFO_TS  |
+---------------------------------------------------------------------+-----------------+----------------+--------------+
| CLIENT 1-CHUNK PARALLEL 1-WAY ROUND ROBIN FULL SCAN OVER whx_table  | null            | null           | null         |
|     SERVER FILTER BY cf_user."firstname" = 'Nick'                   | null            | null           | null         |
+---------------------------------------------------------------------+-----------------+----------------+--------------+
2 rows selected (0.032 seconds)
0: jdbc:phoenix:hadoop101,hadoop102,hadoop103> 

在phoneix中如果出现了FULL SCAN ,代表没有使用上二级索引,出现了全部列扫描

7.2.2 创建索引
0: jdbc:phoenix:hadoop101,hadoop102,hadoop103>  create index idx_firstname on "whx_table"("cf_user"."firstname");
2 rows affected (6.383 seconds)
0: jdbc:phoenix:hadoop101,hadoop102,hadoop103> 

测试

0: jdbc:phoenix:hadoop101,hadoop102,hadoop103> explain select "firstname" from "whx_table" where "firstname"='Nick';
+-----------------------------------------------------------------------------------+-----------------+----------------+--------------+
|                                       PLAN                                        | EST_BYTES_READ  | EST_ROWS_READ  | EST_INFO_TS  |
+-----------------------------------------------------------------------------------+-----------------+----------------+--------------+
| CLIENT 1-CHUNK PARALLEL 1-WAY ROUND ROBIN RANGE SCAN OVER IDX_FIRSTNAME ['Nick']  | null            | null           | null         |
|     SERVER FILTER BY FIRST KEY ONLY                                               | null            | null           | null         |
+-----------------------------------------------------------------------------------+-----------------+----------------+--------------+
2 rows selected (0.054 seconds)
0: jdbc:phoenix:hadoop101,hadoop102,hadoop103> 

如果出现 RANGE SCAN OVER IDX_FIRSTNAME,代表使用上了IDX_FIRSTNAME索引,进行了范围查询!

注意:利用索引查询时不能写select * 语句;

7.2.3 删除索引

drop index 索引名 on 表名

0: jdbc:phoenix:hadoop101,hadoop102,hadoop103> drop index idx_firstname on "whx_table";
7.2.4 联合索引
0: jdbc:phoenix:hadoop101,hadoop102,hadoop103> create index idx_firstname_lastname on "whx_table"("cf_user"."firstname","cf_user"."lastname");
2 rows affected (6.26 seconds)
0: jdbc:phoenix:hadoop101,hadoop102,hadoop103> 
0: jdbc:phoenix:hadoop101,hadoop102,hadoop103> select * from "whx_table";
+-----------+------------+-----------+------------+------------------+
| EMPID_PK  | firstname  | lastname  |    name    |     address      |
+-----------+------------+-----------+------------+------------------+
| 1001      | Nick       | Lee       | HUAWEI     | changanjie10hao  |
| 1002      | Tom        | Lee       | LIANXIANG  | changanjie11hao  |
+-----------+------------+-----------+------------+------------------+
2 rows selected (0.053 seconds)
0: jdbc:phoenix:hadoop101,hadoop102,hadoop103> explain select "firstname" from "whx_table" where "firstname"='Nick' and "lastname"='Lee';
+--------------------------------------------------------------------------------------------------+-----------------+----------------+--------------+
|                                               PLAN                                               | EST_BYTES_READ  | EST_ROWS_READ  | EST_INFO_TS  |
+--------------------------------------------------------------------------------------------------+-----------------+----------------+--------------+
| CLIENT 1-CHUNK PARALLEL 1-WAY ROUND ROBIN RANGE SCAN OVER IDX_FIRSTNAME_LASTNAME ['Nick','Lee']  | null            | null           | null         |
|     SERVER FILTER BY FIRST KEY ONLY                                                              | null            | null           | null         |
+--------------------------------------------------------------------------------------------------+-----------------+----------------+--------------+
2 rows selected (0.049 seconds)
0: jdbc:phoenix:hadoop101,hadoop102,hadoop103> 

如果出现 RANGE SCAN OVER IDX_FIRSTNAME_LASTNAME,代表使用上了IDX_FIRSTNAME_LASTNAME索引,进行了范围查询!

7.3 全局索引与局部索引区别

创建全局索引的方法:

CREATE INDEX my_index ON my_table (my_col)

创建局部索引的方法(相比全局索引多了一个关键字 local):

CREATE LOCAL INDEX my_index ON my_table (my_index)
7.3.1 Global index

Global index 是一种分布式索引,可以直接利用索引定位服务器和region,速度更快,但是由于分布式的原因,数据一旦出现新增变化,分布式的索引要进行跨服务的同步操作,带来大量的通信消耗。所以在写操作频繁的字段上不适合建立Global index。
- Global(全局)索引在创建后,专门在hbase中,生成一个表,将索引的信息存储在表中!
- 适合多读少写的场景!
- 每次写操作,不仅要更新数据,还需要更新索引!
- 比如:数据表在RegionServer01,索引表在RegionServer02中,每次发送一次put请求,必须先请求RegionServer01,再请求RegionServer02,才能完成更新。网络开销很大,加重RegionServer集群的压力。

7.3.2 Local index

Local index 由于是数据与索引在同一服务器上,所以要查询的数据在哪台服务器的哪个region是无法定位的,只能先找到region然后再利用索引。

  • local(本地)索引,在创建后,在表中,创建一个列族,在这个列族中保存索引的信息!
  • 适合多写少读的场景!
  • 索引是以列族的形式在表中存储,索引和数据在一个RegionServer上,此时 频繁写操作时,只需要请求当前的RegionServer。



Phoenix综述(史上最全Phoenix中文文档)

这篇关于大数据-NoSQL数据库-HBase操作框架:Phoenix【Java写的基于JDBC API的操作HBase数据库的SQL引擎框架;低延迟、事务性、可使用sql语句、提供JDBC接口】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1128906

相关文章

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Golang操作DuckDB实战案例分享

《Golang操作DuckDB实战案例分享》DuckDB是一个嵌入式SQL数据库引擎,它与众所周知的SQLite非常相似,但它是为olap风格的工作负载设计的,DuckDB支持各种数据类型和SQL特性... 目录DuckDB的主要优点环境准备初始化表和数据查询单行或多行错误处理和事务完整代码最后总结Duck

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

JAVA系统中Spring Boot应用程序的配置文件application.yml使用详解

《JAVA系统中SpringBoot应用程序的配置文件application.yml使用详解》:本文主要介绍JAVA系统中SpringBoot应用程序的配置文件application.yml的... 目录文件路径文件内容解释1. Server 配置2. Spring 配置3. Logging 配置4. Ma

MySQL中时区参数time_zone解读

《MySQL中时区参数time_zone解读》MySQL时区参数time_zone用于控制系统函数和字段的DEFAULTCURRENT_TIMESTAMP属性,修改时区可能会影响timestamp类型... 目录前言1.时区参数影响2.如何设置3.字段类型选择总结前言mysql 时区参数 time_zon

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

Java 字符数组转字符串的常用方法

《Java字符数组转字符串的常用方法》文章总结了在Java中将字符数组转换为字符串的几种常用方法,包括使用String构造函数、String.valueOf()方法、StringBuilder以及A... 目录1. 使用String构造函数1.1 基本转换方法1.2 注意事项2. 使用String.valu