一文彻底搞懂大模型 - RAG(检索、增强、生成)

2024-09-01 17:28

本文主要是介绍一文彻底搞懂大模型 - RAG(检索、增强、生成),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近这一两周看到不少互联网公司都已经开始秋招提前批面试了。

不同以往的是,当前职场环境已不再是那个双向奔赴时代了。求职者在变多,HC 在变少,岗位要求还更高了。

最近,我们又陆续整理了很多大厂的面试题,帮助一些球友解惑答疑,分享技术面试中的那些弯弯绕绕。

  • 《大模型面试宝典》(2024版) 正式发布

喜欢本文记得收藏、关注、点赞。文末技术交流


RAG(Retrieval-Augmented Generation,检索增强生成) 是一种结合了信息检索技术与语言生成模型的人工智能技术。该技术通过从外部知识库中检索相关信息,并将其作为提示(Prompt)输入给大型语言模型(LLMs),以增强模型处理知识密集型任务的能力,如问答、文本摘要、内容生成等。

RAG模型由Facebook AI Research(FAIR)团队于2020年首次提出,并迅速成为大模型应用中的热门方案。

图片

__一、__检索增强生成(RAG)

什么是RAG?RAG(Retrieval-Augmented Generation,检索增强生成),RAG是一种 AI 框架,它将传统信息检索系统(例如数据库)的优势与生成式大语言模型 (LLM) 的功能结合在一起。

LLM通过将这些额外的知识与自己的语言技能相结合,可以撰写更准确、更具时效性且更贴合具体需求的文字。

图片

什么是RAG?

如何理解RAG?通过上一个问题,我们知道了什么是RAG?了解到RAG是一种结合了信息检索、文本增强和文本生成的自然语言处理(NLP)的技术。

RAG的目的是通过从外部知识库检索相关信息来辅助大语言模型生成更准确、更丰富的文本内容。那我们如何理解RAG的检索、增强和生成呢?

  1. 检索:检索是RAG流程的第一步,从预先建立的知识库中检索与问题相关的信息。这一步的目的是为后续的生成过程提供有用的上下文信息和知识支撑。

  2. 增强:RAG中增强是将检索到的信息用作生成模型(即大语言模型)的上下文输入,以增强模型对特定问题的理解和回答能力。这一步的目的是将外部知识融入生成过程中,使生成的文本内容更加丰富、准确和符合用户需求。通过增强步骤,LLM模型能够充分利用外部知识库中的信息。

  3. 生成:生成是RAG流程的最后一步。这一步的目的是结合LLM生成符合用户需求的回答。生成器会利用检索到的信息作为上下文输入,并结合大语言模型来生成文本内容。

RAG的“检索、增强、生成”,谁增强了谁,谁生成了答案,主语很重要。是从知识库中检索到的问答对,增强了LLM的提示词(prompt),LLM拿着增强后的Prompt生成了问题答案。

图片

如何使用RAG?了解了什么是RGA,同步也理解了RAG的检索、增强和生成。那我们如何使用RAG呢?接下来以RAG搭建知识问答系统具体步骤为例,来讲解如何使用RAG?

  1. 数据准备与知识库构建:
  • 收集数据:首先,需要收集与问答系统相关的各种数据,这些数据可以来自文档、网页、数据库等多种来源。

  • 数据清洗:对收集到的数据进行清洗,去除噪声、重复项和无关信息,确保数据的质量和准确性。

  • 知识库构建:将清洗后的数据构建成知识库。这通常包括将文本分割成较小的片段(chunks),使用文本嵌入模型(如GLM)将这些片段转换成向量,并将这些向量存储在向量数据库(如FAISS、Milvus等)中。

  1. 检索模块设计:
  • 问题向量化:当用户输入查询问题时,使用相同的文本嵌入模型将问题转换成向量。

  • 相似度检索:在向量数据库中检索与问题向量最相似的知识库片段(chunks)。这通常通过计算向量之间的相似度(如余弦相似度)来实现。

  • 结果排序:根据相似度得分对检索到的结果进行排序,选择最相关的片段作为后续生成的输入。

  1. 生成模块设计:
  • 上下文融合:将检索到的相关片段与原始问题合并,形成更丰富的上下文信息。

  • 大语言模型生成:使用大语言模型(如GLM)基于上述上下文信息生成回答。大语言模型会学习如何根据检索到的信息来生成准确、有用的回答。

大家可以结合自己的业务领域知识,开始搭建医疗、法律、产品知识问答。先搭建Demo,然后工作中不断完善知识库问答对。

图片

二、RAG的原理、流程及架构

RAG工作原理是什么?大型语言模型(LLM)面临两个问题,第一个问题是LLM会产生幻觉,第二个是LLM的知识中断。

  1. 知识截止:当 LLM 返回的信息与模型的训练数据相比过时时。每个基础模型都有知识截止,这意味着其知识仅限于训练时可用的数据。

  2. 幻觉:当模型自信地做出错误反应时,就会发生幻觉。

检索增强生成 (RAG) 摆脱了知识限制,整合了外部数据,从外部知识库中检索相关信息,增强模型的生成能力。

图片

RAG工作流程是什么?通过检索增强技术,将用户查询与索引知识融合,利用大语言模型生成准确回答。

  1. 知识准备:收集并转换知识文档为文本数据,进行预处理和索引。

  2. 嵌入与索引:使用嵌入模型将文本转换为向量,并存储在向量数据库中。

  3. 查询检索:用户查询转换为向量,从数据库中检索相关知识。

  4. 提示增强:结合检索结果构建增强提示模版。

  5. 生成回答:大语言模型根据增强模版生成准确回答。

图片

RAG技术架构是什么?RAG技术架构主要由两个核心模块组成,检索模块(Retriever)和生成模块(Generator)。

  1. 检索模块(Retriever):
  • 文本嵌入:使用预训练的文本嵌入模型(如GLM)将查询和文档转换成向量表示,以便在向量空间中进行相似度计算。

  • 向量搜索:利用高效的向量搜索技术(如FAISS、Milvus等向量数据库)在向量空间中检索与查询向量最相似的文档或段落。

  • 双塔模型:检索模块常采用双塔模型(Dual-Encoder)进行高效的向量化检索。双塔模型由两个独立的编码器组成,一个用于编码查询,另一个用于编码文档。这两个编码器将查询和文档映射到相同的向量空间中,以便进行相似度计算。

  1. 生成模块(Generator):
  • 强大的生成模型:生成模块通常使用在大规模数据上预训练的生成模型(如GLM),这些模型在生成自然语言文本方面表现出色。

  • 上下文融合:生成模块将检索到的相关文档与原始查询合并,形成更丰富的上下文信息,作为生成模型的输入。

  • 生成过程:生成模型根据输入的上下文信息,生成连贯、准确且信息丰富的回答或文本。

结合高效的检索模块(Retriever)与强大的生成模型(Generator),实现基于外部知识增强的自然语言生成能力。

图片

技术交流

在这里插入图片描述

通俗易懂讲解大模型系列

  • 重磅消息!《大模型面试宝典》(2024版) 正式发布!

  • 重磅消息!《大模型实战宝典》(2024版) 正式发布!

  • 做大模型也有1年多了,聊聊这段时间的感悟!

  • 用通俗易懂的方式讲解:大模型算法工程师最全面试题汇总

  • 用通俗易懂的方式讲解:不要再苦苦寻觅了!AI 大模型面试指南(含答案)的最全总结来了!

  • 用通俗易懂的方式讲解:我的大模型岗位面试总结:共24家,9个offer

  • 用通俗易懂的方式讲解:大模型 RAG 在 LangChain 中的应用实战

  • 用通俗易懂的方式讲解:ChatGPT 开放的多模态的DALL-E 3功能,好玩到停不下来!

  • 用通俗易懂的方式讲解:基于扩散模型(Diffusion),文生图 AnyText 的效果太棒了

  • 用通俗易懂的方式讲解:在 CPU 服务器上部署 ChatGLM3-6B 模型

  • 用通俗易懂的方式讲解:ChatGLM3-6B 部署指南

  • 用通俗易懂的方式讲解:使用 LangChain 封装自定义的 LLM,太棒了

  • 用通俗易懂的方式讲解:基于 Langchain 和 ChatChat 部署本地知识库问答系统

  • 用通俗易懂的方式讲解:Llama2 部署讲解及试用方式

  • 用通俗易懂的方式讲解:一份保姆级的 Stable Diffusion 部署教程,开启你的炼丹之路

  • 用通俗易懂的方式讲解:LlamaIndex 官方发布高清大图,纵览高级 RAG技术

  • 用通俗易懂的方式讲解:为什么大模型 Advanced RAG 方法对于AI的未来至关重要?

  • 用通俗易懂的方式讲解:基于 Langchain 框架,利用 MongoDB 矢量搜索实现大模型 RAG 高级检索方法

参考文献:

[1] https://betterprogramming.pub/fine-tuning-your-embedding-model-to-maximize-relevance-retrieval-in-rag-pipeline-2ea3fa231149

[2] https://github.com/weaviate/recipes/blob/main/integrations/llamaindex/retrieval-augmented-generation/naive_rag.ipynb

[3] https://medium.com/towards-data-science/retrieval-augmented-generation-rag-from-theory-to-langchain-implementation-4e9bd5f6a4f2

[4] https://github.com/run-llama/llama_index

[5] https://github.com/weaviate/recipes/blob/main/integrations/llamaindex/retrieval-augmented-generation/advanced_rag.ipynb

这篇关于一文彻底搞懂大模型 - RAG(检索、增强、生成)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1127585

相关文章

MybatisGenerator文件生成不出对应文件的问题

《MybatisGenerator文件生成不出对应文件的问题》本文介绍了使用MybatisGenerator生成文件时遇到的问题及解决方法,主要步骤包括检查目标表是否存在、是否能连接到数据库、配置生成... 目录MyBATisGenerator 文件生成不出对应文件先在项目结构里引入“targetProje

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

Python使用qrcode库实现生成二维码的操作指南

《Python使用qrcode库实现生成二维码的操作指南》二维码是一种广泛使用的二维条码,因其高效的数据存储能力和易于扫描的特点,广泛应用于支付、身份验证、营销推广等领域,Pythonqrcode库是... 目录一、安装 python qrcode 库二、基本使用方法1. 生成简单二维码2. 生成带 Log

一文带你理解Python中import机制与importlib的妙用

《一文带你理解Python中import机制与importlib的妙用》在Python编程的世界里,import语句是开发者最常用的工具之一,它就像一把钥匙,打开了通往各种功能和库的大门,下面就跟随小... 目录一、python import机制概述1.1 import语句的基本用法1.2 模块缓存机制1.

Python使用Pandas库将Excel数据叠加生成新DataFrame的操作指南

《Python使用Pandas库将Excel数据叠加生成新DataFrame的操作指南》在日常数据处理工作中,我们经常需要将不同Excel文档中的数据整合到一个新的DataFrame中,以便进行进一步... 目录一、准备工作二、读取Excel文件三、数据叠加四、处理重复数据(可选)五、保存新DataFram

SpringBoot生成和操作PDF的代码详解

《SpringBoot生成和操作PDF的代码详解》本文主要介绍了在SpringBoot项目下,通过代码和操作步骤,详细的介绍了如何操作PDF,希望可以帮助到准备通过JAVA操作PDF的你,项目框架用的... 目录本文简介PDF文件简介代码实现PDF操作基于PDF模板生成,并下载完全基于代码生成,并保存合并P

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

详解Java中如何使用JFreeChart生成甘特图

《详解Java中如何使用JFreeChart生成甘特图》甘特图是一种流行的项目管理工具,用于显示项目的进度和任务分配,在Java开发中,JFreeChart是一个强大的开源图表库,能够生成各种类型的图... 目录引言一、JFreeChart简介二、准备工作三、创建甘特图1. 定义数据集2. 创建甘特图3.

一文带你搞懂Nginx中的配置文件

《一文带你搞懂Nginx中的配置文件》Nginx(发音为“engine-x”)是一款高性能的Web服务器、反向代理服务器和负载均衡器,广泛应用于全球各类网站和应用中,下面就跟随小编一起来了解下如何... 目录摘要一、Nginx 配置文件结构概述二、全局配置(Global Configuration)1. w

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行