通义说【线性代数】为什么矩阵乘以向量是一个对矩阵中列向量的线性组合

2024-09-01 10:44

本文主要是介绍通义说【线性代数】为什么矩阵乘以向量是一个对矩阵中列向量的线性组合,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

矩阵乘以向量可以被理解为该向量在矩阵所代表的空间变换下的映射结果,也可以看作是矩阵列向量的线性组合。为了更好地理解这一点,让我们从矩阵乘法的基本定义出发。

假设有一个 m × n m \times n m×n的矩阵 A A A和一个 n n n维列向量 x \mathbf{x} x,矩阵 A A A可以写成由它的列向量组成的集合,即:

A = [ a 1 , a 2 , … , a n ] A = [\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_n] A=[a1,a2,,an]

这里每个 a i \mathbf{a}_i ai都是一个 m m m维的列向量。当我们将矩阵 A A A与向量 x \mathbf{x} x相乘时:

A x = x 1 a 1 + x 2 a 2 + … + x n a n A\mathbf{x} = x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \ldots + x_n\mathbf{a}_n Ax=x1a1+x2a2++xnan

这里 x \mathbf{x} x的每个分量 x i x_i xi都是实数,它们分别与矩阵 A A A的每一列向量相乘,然后所有这样的乘积向量再相加起来。这个操作实际上就是对矩阵 A A A的列向量进行了加权求和,权重就是向量 x \mathbf{x} x的各个分量。因此,结果向量 A x A\mathbf{x} Ax是矩阵 A A A的列空间中的一个向量,并且可以视为矩阵 A A A的列向量按照 x \mathbf{x} x中给出的系数的线性组合。

举例说明

如果我们有一个 3 × 2 3 \times 2 3×2的矩阵 A A A和一个 2 2 2维的向量 x \mathbf{x} x

A = [ a 11 a 12 a 21 a 22 a 31 a 32 ] , x = [ x 1 x 2 ] A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} A= a11a21a31a12a22a32 ,x=[x1x2]

那么矩阵乘法 A x A\mathbf{x} Ax可以写作:

A x = [ a 11 a 12 a 21 a 22 a 31 a 32 ] [ x 1 x 2 ] = x 1 [ a 11 a 21 a 31 ] + x 2 [ a 12 a 22 a 32 ] = x 1 a 1 + x 2 a 2 A\mathbf{x} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1 \begin{bmatrix} a_{11} \\ a_{21} \\ a_{31} \end{bmatrix} +x_2 \begin{bmatrix} a_{12} \\ a_{22} \\ a_{32} \end{bmatrix} = x_1\mathbf{a}_1 + x_2\mathbf{a}_2 Ax= a11a21a31a12a22a32 [x1x2]=x1 a11a21a31 +x2 a12a22a32 =x1a1+x2a2

这里的 a 1 \mathbf{a}_1 a1 a 2 \mathbf{a}_2 a2分别是矩阵 A A A的第一列和第二列。因此, A x A\mathbf{x} Ax实际上就是 x \mathbf{x} x中的系数 x 1 x_1 x1 x 2 x_2 x2 a 1 \mathbf{a}_1 a1 a 2 \mathbf{a}_2 a2进行了线性组合的结果。这就是为什么说矩阵乘以向量的结果是矩阵列向量的线性组合。

这篇关于通义说【线性代数】为什么矩阵乘以向量是一个对矩阵中列向量的线性组合的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1126708

相关文章

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

hdu 4565 推倒公式+矩阵快速幂

题意 求下式的值: Sn=⌈ (a+b√)n⌉%m S_n = \lceil\ (a + \sqrt{b}) ^ n \rceil\% m 其中: 0<a,m<215 0< a, m < 2^{15} 0<b,n<231 0 < b, n < 2^{31} (a−1)2<b<a2 (a-1)^2< b < a^2 解析 令: An=(a+b√)n A_n = (a +

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个

hdu 6198 dfs枚举找规律+矩阵乘法

number number number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Problem Description We define a sequence  F : ⋅   F0=0,F1=1 ; ⋅   Fn=Fn

Vector3 三维向量

Vector3 三维向量 Struct Representation of 3D vectors and points. 表示3D的向量和点。 This structure is used throughout Unity to pass 3D positions and directions around. It also contains functions for doin

8. 自然语言处理中的深度学习:从词向量到BERT

引言 深度学习在自然语言处理(NLP)领域的应用极大地推动了语言理解和生成技术的发展。通过从词向量到预训练模型(如BERT)的演进,NLP技术在机器翻译、情感分析、问答系统等任务中取得了显著成果。本篇博文将探讨深度学习在NLP中的核心技术,包括词向量、序列模型(如RNN、LSTM),以及BERT等预训练模型的崛起及其实际应用。 1. 词向量的生成与应用 词向量(Word Embedding)

用Python实现时间序列模型实战——Day 14: 向量自回归模型 (VAR) 与向量误差修正模型 (VECM)

一、学习内容 1. 向量自回归模型 (VAR) 的基本概念与应用 向量自回归模型 (VAR) 是多元时间序列分析中的一种模型,用于捕捉多个变量之间的相互依赖关系。与单变量自回归模型不同,VAR 模型将多个时间序列作为向量输入,同时对这些变量进行回归分析。 VAR 模型的一般形式为: 其中: ​ 是时间  的变量向量。 是常数向量。​ 是每个时间滞后的回归系数矩阵。​ 是误差项向量,假

线性代数|机器学习-P35距离矩阵和普鲁克问题

文章目录 1. 距离矩阵2. 正交普鲁克问题3. 实例说明 1. 距离矩阵 假设有三个点 x 1 , x 2 , x 3 x_1,x_2,x_3 x1​,x2​,x3​,三个点距离如下: ∣ ∣ x 1 − x 2 ∣ ∣ 2 = 1 , ∣ ∣ x 2 − x 3 ∣ ∣ 2 = 1 , ∣ ∣ x 1 − x 3 ∣ ∣ 2 = 6 \begin{equation} ||x

【线性代数】正定矩阵,二次型函数

本文主要介绍正定矩阵,二次型函数,及其相关的解析证明过程和各个过程的可视化几何解释(深蓝色字体)。 非常喜欢清华大学张颢老师说过的一段话:如果你不能用可视化的方式看到事情的结果,那么你就很难对这个事情有认知,认知就是直觉,解析的东西可以让你理解,但未必能让你形成直觉,因为他太反直觉了。 正定矩阵 定义 给定一个大小为 n×n 的实对称矩阵 A ,若对于任意长度为 n 的非零向量 ,有 恒成

python科学计算:NumPy 线性代数与矩阵操作

1 NumPy 中的矩阵与数组 在 NumPy 中,矩阵实际上是一种特殊的二维数组,因此几乎所有数组的操作都可以应用到矩阵上。不过,矩阵运算与一般的数组运算存在一定的区别,尤其是在点积、乘法等操作中。 1.1 创建矩阵 矩阵可以通过 NumPy 的 array() 函数创建。矩阵的形状可以通过 shape 属性来访问。 import numpy as np# 创建一个 2x3 矩阵mat