分类预测|基于黑翅鸢优化BKA-Transformer-LSTM组合模型的数据预测Matlab程序多特征输入多类别输出

本文主要是介绍分类预测|基于黑翅鸢优化BKA-Transformer-LSTM组合模型的数据预测Matlab程序多特征输入多类别输出,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

分类预测|基于黑翅鸢优化BKA-Transformer-LSTM组合模型的数据预测Matlab程序多特征输入多类别输出

文章目录

  • 一、基本原理
      • BKA-Transformer-LSTM 数据分类预测详细原理和流程
      • 详细原理和流程
        • 1. 数据预处理
        • 2. 模型构建
        • 3. 模型训练
        • 4. BKA 优化
        • 5. 模型测试与验证
      • 结果应用
  • 二、实验结果
  • 三、核心代码
  • 四、代码获取
  • 五、总结

分类预测|基于黑翅鸢优化BKA-Transformer-LSTM组合模型的数据预测Matlab程序多特征输入多类别输出

一、基本原理

BKA-Transformer-LSTM 数据分类预测详细原理和流程

BKA(黑翅鸢优化算法)
BKA 是一种模拟黑翅鸢捕食行为的优化算法,旨在寻找全局最优解。它通过搜索策略来优化目标函数。

Transformer-LSTM 组合模型
Transformer-LSTM 结合了 Transformer 和 LSTM 的优点,适用于时间序列数据的特征提取和预测。

详细原理和流程

1. 数据预处理
  • 数据清洗:处理缺失值、异常值和数据噪声。
  • 特征工程:提取和选择对分类任务有用的特征。
2. 模型构建
  • Transformer 部分

    • 输入嵌入:将输入数据转换为嵌入向量。
    • 自注意力机制:通过多头自注意力机制提取全局特征,捕捉序列中不同位置的依赖关系。
    • 位置编码:为序列中的每个位置添加位置信息。
  • LSTM 部分

    • 序列建模:在 Transformer 输出的基础上,使用 LSTM 处理时间序列信息,捕捉序列中的长期依赖性。
  • 组合结构

    • 特征融合:将 Transformer 和 LSTM 提取的特征进行融合,形成最终的特征表示。
3. 模型训练
  • 初始化:随机初始化 Transformer 和 LSTM 的参数。
  • 前向传播:通过 Transformer 和 LSTM 计算预测结果。
  • 损失函数:使用交叉熵损失函数来衡量预测结果与真实标签之间的差异。
  • 反向传播:计算梯度并更新模型参数以最小化损失函数。
4. BKA 优化
  • 目标定义:设置优化目标,如最小化模型损失。
  • 初始化解集:生成一组初始参数解。
  • 模型评估:对每个解(超参数组合)训练 Transformer-LSTM 模型,并评估其性能。
  • 优化过程:应用 BKA 的捕食行为模拟,通过调整参数以优化模型性能。
  • 更新与迭代:根据性能更新解集,重复优化过程,直到找到最佳超参数组合。
5. 模型测试与验证
  • 模型评估:在测试集上评估最终模型的性能,如准确率、F1 分数等。
  • 结果分析:分析模型的分类效果,并进行必要的调整和改进。

结果应用

  • 预测:使用优化后的 BKA-Transformer-LSTM 模型对新数据进行分类预测。
  • 模型部署:将模型部署到生产环境中进行实际应用。

通过结合 BKA 的优化能力和 Transformer-LSTM 的特征提取与序列建模能力,这种组合模型可以在复杂的时间序列数据分类任务中表现出色。

二、实验结果

BKA-Transformer-LSTM实验结果
在这里插入图片描述

在这里插入图片描述

三、核心代码

%%  导入数据
res = xlsread('数据集.xlsx');                % 数据读取%%  数据分析
num_size = 0.8;                              % 训练集占数据集比例
outdim = 1;                                  % 最后一列为输出
num_class = length(unique(res(:,end)));      % 计算类别数 
num_samples = size(res, 1);                  % 样本个数
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);
t_train = categorical(T_train)';
t_test  = categorical(T_test)';

四、代码获取

私信即可 89米

五、总结

包括但不限于
优化BP神经网络,深度神经网络DNN,极限学习机ELM,鲁棒极限学习机RELM,核极限学习机KELM,混合核极限学习机HKELM,支持向量机SVR,相关向量机RVM,最小二乘回归PLS,最小二乘支持向量机LSSVM,LightGBM,Xgboost,RBF径向基神经网络,概率神经网络PNN,GRNN,Elman,随机森林RF,卷积神经网络CNN,长短期记忆网络LSTM,BiLSTM,GRU,BiGRU,TCN,BiTCN,CNN-LSTM,TCN-LSTM,BiTCN-BiGRU,LSTM–Attention,VMD–LSTM,PCA–BP等等

用于数据的分类,时序,回归预测。
多特征输入,单输出,多输出

这篇关于分类预测|基于黑翅鸢优化BKA-Transformer-LSTM组合模型的数据预测Matlab程序多特征输入多类别输出的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1123384

相关文章

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1