多任务学习MTL模型:多目标Loss优化策略

2024-08-30 00:28

本文主要是介绍多任务学习MTL模型:多目标Loss优化策略,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

之前的文章中多任务学习MTL模型:MMoE、PLE,介绍了针对多任务学习的几种模型,着重网络结构方面的优化,减缓task之间相关性低导致梯度冲突,模型效果差,以及task之间的“跷跷板”问题。

但其实多任务学习还存在另外一些棘手的问题:

1、不同task的loss量级不同,可能会出现loss较大的task主导的现象(loss较大的task,梯度也会较大,导致模型的优化方向很大程度上由该task决定);

2、不同task的学习速度不同,有的慢有的快;

3、不同的loss应该分配怎样的权重?直接平均?如何选出最优的loss权重组合?

Using Uncertainty to Weigh Losses

相关论文:《Multi-Task Learning Using Uncertainty to Weigh Losses for Scene
Geometry and Semantics》

这篇论文指出了多任务学习模型的效果很大程度上由共享的权重决定,但训练这些权重是很困难。由此引出uncertainty的概念,来衡量不同的task的loss,使得可以同时学习不同类型的task。

图片

  1. 其中, α {\alpha} α为可学习参数,论文认为它是对应task建模的uncertainty(不确定性)。

  2. 容易看出,总的loss会惩罚loss大且 α {\alpha} α小的task,因为对于这种task, 1 2 α 2 L {\frac{1}{2\alpha^2}L} 2α21L这一项就会很大,SGD就会将它往小优化;

  3. 它代表着对于loss较大的task,意味着它的uncertainty(不确定性)也较高,为了避免模型往错误的方向“大步迈”,应该以较小的梯度去更新w;相反的,对于loss较小的task,它的uncertainty也就较低,以较大的梯度去更新w;

  4. 同时,这也能避免让较大loss的task主导的问题。

总结:大loss的task给予小权重,小loss的task给予大权重。

注意事项:这个方法由于后面的log项,可能会出现总loss为负的情况。

GradNorm

相关论文:《GradNorm: Gradient Normalization for Adaptive Loss Balancing in
Deep Multitask Networks》

这篇论文提出一个新的方法:梯度正则化gradient normalization (GradNorm),它能自动平衡多task不同的梯度量级,提升多任务学习的效果,减少过拟合。

首先,总loss的定义仍是不同task的loss加权平均:

image-20220104212733900

GradNorm设计了额外的loss来学习不同task loss的权重 w i {w_i} wi,但它不参与网络层的参数的反向梯度更新,目的在于不同task的梯度通过正则化能够变成同样的量级,使不同task可以以接近的速度进行训练:

image-20220104211807540

其中,t代表训练的步数;

W一般是取最后一层共享网络层shared layer的权重;

第i个task的正则化梯度,即loss对W的梯度,然后再做L2-norm:

image-20220104213519661

image-20220104213725845

第i个task的loss(第t步)与初设loss比率,用来代表学习速度:

image-20220104214027162

第i个task的相对学习速度:

image-20220104214059350

注意事项:

1、容易看出不同task的初设loss: L i ( 0 ) {L_i(0)} Li(0),对学习速度的计算影响很大。

如果所有网络层有着稳定的参数初设化,则可以直接使用(第一次的loss);

但如果 L i ( 0 ) {L_i(0)} Li(0)对参数初设化方式很敏感,在多分类中,则可以令 L i ( 0 ) = l o g ( C ) {L_i(0)}=log(C) Li(0)=log(C),C为分类数。

2、论文的流程是在每轮训练中,先通过反向传播进行不同task loss的权重 w i {w_i} wi,再进行网络参数的更新。

Dynamic Weight Average

相关论文:《End-to-End Multi-Task Learning with Attention》

这篇论文仍然致力于寻找平衡多个task训练的方法,提出了一种**Dynamic Weight Average (DWA)**的方法,它比较简单直接,与GradNorm不同,不需要计算梯度,而是只需要task的loss。

image-20220108094337220

  1. λ k {\lambda_k} λk为task的权重,即总的loss仍为所有task的loss加权平均: L t o t a l = ∑ k λ k L k {L_{total}=\sum_k\lambda_kL_k} Ltotal=kλkLk
  2. w_k则为上一轮以及上上轮的loss比率,代表不同task的学习速率
  3. T起到平滑task权重的作用,T越大,不同task的权重分布越均匀。甚至T足够大的话,则 λ k ≈ 1 {\lambda_k} \approx 1 λk1,每个task的权重相等
  4. K则是让所有task的权重加权求和后为K: ∑ k λ k = K {\sum_k\lambda_k=K} kλk=K。因为一般情况下不特殊处理的话,每个task的权重都相等为1,那么所有task加权之后便为K。

Pareto-Eficient

相关论文:《A Pareto-Efficient Algorithm for Multiple Objective Optimization
in E-Commerce Recommendation》

这篇论文对总loss的定义仍然是所有task的loss加权平均,但这个权重是经过正则化(scalarization)的:

image-20220108102209035

image-20220108102311650

不过,论文指出了不同task会有不同的优先级,比如一个task为点击预测,一个task转化预测,那肯定转化预测的task的优先级更高,因此,可以为不同task的权重增加了一个边界条件:

w i ≥ c i , 0 < c i < 1 , ∑ K c i ≤ 1 {w_i \ge c_i},\ 0<c_i<1,\ \sum_Kc_i \le 1 wici, 0<ci<1, Kci1

我们的目标当然是让总loss即 L ( θ ) {L(\theta)} L(θ)最小,常规做法,对 L ( θ ) {L(\theta)} L(θ)求导,然后令其导数等于0,即为下式:

image-20220111205436509

满足这种条件的解法称为Pareto stationary(帕累托平稳)

以上式子可以转化为:(K个 w i ▽ θ L i ( θ ) {w_i\triangledown_\theta L_i(\theta)} wiθLi(θ) 二范数之和的最小值即为0,最小化就是在往0逼近)

image-20220111211139699

论文也给出了最优的task的权重组合解法:

w ^ i = w i − c i {\hat{w}_i = w_i - c_i} w^i=wici,则不等式变成:

image-20220111212541560

然后根据以上理论求出 w ^ {\hat{w}} w^的所有解 w ^ ∗ {\hat{w}}^* w^,但是可能会出现负数的解。

image-20220111212637026

由于上述求出的 w ^ ∗ {\hat{w}}^* w^可能为负,并且为了能够用上的解,最终转化为非负的最小二乘问题:

image-20220111213150907

总结

以上论文都是为了解决不同task的loss量级或者学习速度不同,求出最优的task权重组合;

大致流程都相同:先对模型参数进行反向传播进行更新,再使用各自的算法更新task权重

-------------------------------------------------------- END --------------------------------------------------------

以上的算法实现:github

这篇关于多任务学习MTL模型:多目标Loss优化策略的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1119283

相关文章

Python实现快速扫描目标主机的开放端口和服务

《Python实现快速扫描目标主机的开放端口和服务》这篇文章主要为大家详细介绍了如何使用Python编写一个功能强大的端口扫描器脚本,实现快速扫描目标主机的开放端口和服务,感兴趣的小伙伴可以了解下... 目录功能介绍场景应用1. 网络安全审计2. 系统管理维护3. 网络故障排查4. 合规性检查报错处理1.

Spring Boot基于 JWT 优化 Spring Security 无状态登录实战指南

《SpringBoot基于JWT优化SpringSecurity无状态登录实战指南》本文介绍如何使用JWT优化SpringSecurity实现无状态登录,提高接口安全性,并通过实际操作步骤... 目录Spring Boot 实战:基于 JWT 优化 Spring Security 无状态登录一、先搞懂:为什

SQL 注入攻击(SQL Injection)原理、利用方式与防御策略深度解析

《SQL注入攻击(SQLInjection)原理、利用方式与防御策略深度解析》本文将从SQL注入的基本原理、攻击方式、常见利用手法,到企业级防御方案进行全面讲解,以帮助开发者和安全人员更系统地理解... 目录一、前言二、SQL 注入攻击的基本概念三、SQL 注入常见类型分析1. 基于错误回显的注入(Erro

Python多任务爬虫实现爬取图片和GDP数据

《Python多任务爬虫实现爬取图片和GDP数据》本文主要介绍了基于FastAPI开发Web站点的方法,包括搭建Web服务器、处理图片资源、实现多任务爬虫和数据可视化,同时,还简要介绍了Python爬... 目录一. 基于FastAPI之Web站点开发1. 基于FastAPI搭建Web服务器2. Web服务

Java JAR 启动内存参数配置指南(从基础设置到性能优化)

《JavaJAR启动内存参数配置指南(从基础设置到性能优化)》在启动Java可执行JAR文件时,合理配置JVM内存参数是保障应用稳定性和性能的关键,本文将系统讲解如何通过命令行参数、环境变量等方式... 目录一、核心内存参数详解1.1 堆内存配置1.2 元空间配置(MetASPace)1.3 线程栈配置1.

Java领域模型示例详解

《Java领域模型示例详解》本文介绍了Java领域模型(POJO/Entity/VO/DTO/BO)的定义、用途和区别,强调了它们在不同场景下的角色和使用场景,文章还通过一个流程示例展示了各模型如何协... 目录Java领域模型(POJO / Entity / VO/ DTO / BO)一、为什么需要领域模

深入理解Redis线程模型的原理及使用

《深入理解Redis线程模型的原理及使用》Redis的线程模型整体还是多线程的,只是后台执行指令的核心线程是单线程的,整个线程模型可以理解为还是以单线程为主,基于这种单线程为主的线程模型,不同客户端的... 目录1 Redis是单线程www.chinasem.cn还是多线程2 Redis如何保证指令原子性2.

Redis中删除策略的几种实现方式

《Redis中删除策略的几种实现方式》本文详细介绍了Redis的过期键删除策略和内存淘汰策略,过期键删除策略包括定时删除、惰性删除和定期删除,具有一定的参考价值,感兴趣的可以了解一下... 目录前言一、设计背景:为什么需要删除策略?二、第一类:过期键的 3 种核心删除策略1. 定时删除(Timed Dele

前端缓存策略的自解方案全解析

《前端缓存策略的自解方案全解析》缓存从来都是前端的一个痛点,很多前端搞不清楚缓存到底是何物,:本文主要介绍前端缓存的自解方案,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、为什么“清缓存”成了技术圈的梗二、先给缓存“把个脉”:浏览器到底缓存了谁?三、设计思路:把“发版”做成“自愈”四、代码

Linux五种IO模型的使用解读

《Linux五种IO模型的使用解读》文章系统解析了Linux的五种IO模型(阻塞、非阻塞、IO复用、信号驱动、异步),重点区分同步与异步IO的本质差异,强调同步由用户发起,异步由内核触发,通过对比各模... 目录1.IO模型简介2.五种IO模型2.1 IO模型分析方法2.2 阻塞IO2.3 非阻塞IO2.4