分类预测|基于哈里斯鹰优化混合核极限学习机的数据分类预测Matlab程序HHO-HKELM多特征输入多类别输出含基础程序

本文主要是介绍分类预测|基于哈里斯鹰优化混合核极限学习机的数据分类预测Matlab程序HHO-HKELM多特征输入多类别输出含基础程序,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

分类预测|基于哈里斯鹰优化混合核极限学习机的数据分类预测Matlab程序HHO-HKELM多特征输入多类别输出含基础程序

文章目录

  • 前言
    • 分类预测|基于哈里斯鹰优化混合核极限学习机的数据分类预测Matlab程序HHO-HKELM多特征输入多类别输出含基础程序
  • 一、HHO-HKELM模型
      • HHO-HKELM 分类预测的详细原理和流程
        • 1. **混合核极限学习机(HKELM)概述**
        • 2. **哈里斯鹰优化算法(HHO)概述**
        • 3. **HHO-HKELM 分类预测的流程**
      • 总结
  • 二、实验结果
  • 三、核心代码
  • 四、代码获取
  • 五、总结


前言

分类预测|基于哈里斯鹰优化混合核极限学习机的数据分类预测Matlab程序HHO-HKELM多特征输入多类别输出含基础程序

一、HHO-HKELM模型

HHO-HKELM 分类预测的详细原理和流程

1. 混合核极限学习机(HKELM)概述

极限学习机(ELM)是一种单隐层前馈神经网络,其训练过程非常高效,主要包括以下步骤:

  • 随机生成隐藏层节点的权重和偏置
  • 计算隐层节点输出矩阵
  • 通过最小二乘法确定输出权重

HKELM 是 ELM 的一种扩展,通过使用混合核函数来增强模型的表达能力。核函数的选择影响模型的非线性映射能力,混合核函数结合了多个核函数的优点。

2. 哈里斯鹰优化算法(HHO)概述

哈里斯鹰优化(HHO)是一种模拟哈里斯鹰捕猎行为的优化算法,主要包括以下步骤:

  • 初始化鹰的种群:随机生成鹰的位置作为初始解。
  • 评估适应度:根据目标函数计算每个解的适应度。
  • 模拟鹰的行为:包括搜索猎物、围捕猎物和攻击猎物的行为。
  • 更新位置:通过模拟捕猎行为来更新每只鹰的位置。
  • 迭代:重复行为模拟和位置更新的过程,直到满足终止条件(如最大迭代次数或适应度阈值)。
3. HHO-HKELM 分类预测的流程
  1. 初始化 HHO

    • 随机生成一组哈里斯鹰的位置,每个位置代表 HKELM 模型中的核函数参数或其他超参数。
  2. 定义适应度函数

    • 使用 HKELM 模型训练数据,并计算分类性能指标(如准确率、F1 分数等)。适应度函数通常为 HKELM 在验证集上的分类性能指标。
  3. 评估适应度

    • 对每只鹰的位置(即 HKELM 的超参数)进行训练和验证,计算其适应度值。
  4. 模拟鹰的行为

    • 根据当前最优解(猎物)和其他较优解的位置信息,模拟鹰的行为(如包围、攻击),更新每只鹰的位置。更新过程会调整 HKELM 的超参数,以优化分类性能。
  5. 更新位置

    • 利用 HHO 算法的规则来更新每只鹰的位置,寻找最优的 HKELM 超参数组合。
  6. 迭代

    • 重复适应度评估和位置更新的过程,逐步优化 HKELM 的超参数配置。每次迭代后更新当前最优解,直到满足终止条件。
  7. 最终模型

    • 使用经过 HHO 优化的 HKELM 超参数训练最终的 HKELM 模型。将该模型用于分类预测,并在测试集上进行评估。

总结

HHO-HKELM 结合了哈里斯鹰优化算法和混合核极限学习机,通过 HHO 优化 HKELM 的超参数,增强了分类模型的性能和泛化能力。HHO 提供了一个全局搜索机制来寻找最优超参数,而 HKELM 利用混合核函数提高了模型的表达能力,从而提升分类预测的准确性。

二、实验结果

HHO-HKELM实验结果
在这里插入图片描述

HKELM实验结果在这里插入图片描述

三、核心代码


%%  导入数据
res = xlsread('数据集.xlsx');%%  数据分析
num_size = 0.7;                              % 训练集占数据集比例
outdim = 1;                                  % 最后一列为输出
num_samples = size(res, 1);                  % 样本个数
res = res(randperm(num_samples), :);         % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input );
t_train = T_train;
t_test  = T_test;%%  转置以适应模型
p_train = p_train'; p_test = p_test';
t_train = t_train'; t_test = t_test';

四、代码获取

私信即可 30米

五、总结

包括但不限于
优化BP神经网络,深度神经网络DNN,极限学习机ELM,鲁棒极限学习机RELM,核极限学习机KELM,混合核极限学习机HKELM,支持向量机SVR,相关向量机RVM,最小二乘回归PLS,最小二乘支持向量机LSSVM,LightGBM,Xgboost,RBF径向基神经网络,概率神经网络PNN,GRNN,Elman,随机森林RF,卷积神经网络CNN,长短期记忆网络LSTM,BiLSTM,GRU,BiGRU,TCN,BiTCN,CNN-LSTM,TCN-LSTM,BiTCN-BiGRU,LSTM–Attention,VMD–LSTM,PCA–BP等等

用于数据的分类,时序,回归预测。
多特征输入,单输出,多输出

这篇关于分类预测|基于哈里斯鹰优化混合核极限学习机的数据分类预测Matlab程序HHO-HKELM多特征输入多类别输出含基础程序的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1117026

相关文章

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

Oracle数据库使用 listagg去重删除重复数据的方法汇总

《Oracle数据库使用listagg去重删除重复数据的方法汇总》文章介绍了在Oracle数据库中使用LISTAGG和XMLAGG函数进行字符串聚合并去重的方法,包括去重聚合、使用XML解析和CLO... 目录案例表第一种:使用wm_concat() + distinct去重聚合第二种:使用listagg,

C++中实现调试日志输出

《C++中实现调试日志输出》在C++编程中,调试日志对于定位问题和优化代码至关重要,本文将介绍几种常用的调试日志输出方法,并教你如何在日志中添加时间戳,希望对大家有所帮助... 目录1. 使用 #ifdef _DEBUG 宏2. 加入时间戳:精确到毫秒3.Windows 和 MFC 中的调试日志方法MFC

Python实现将实体类列表数据导出到Excel文件

《Python实现将实体类列表数据导出到Excel文件》在数据处理和报告生成中,将实体类的列表数据导出到Excel文件是一项常见任务,Python提供了多种库来实现这一目标,下面就来跟随小编一起学习一... 目录一、环境准备二、定义实体类三、创建实体类列表四、将实体类列表转换为DataFrame五、导出Da

Python实现数据清洗的18种方法

《Python实现数据清洗的18种方法》本文主要介绍了Python实现数据清洗的18种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录1. 去除字符串两边空格2. 转换数据类型3. 大小写转换4. 移除列表中的重复元素5. 快速统

Python数据处理之导入导出Excel数据方式

《Python数据处理之导入导出Excel数据方式》Python是Excel数据处理的绝佳工具,通过Pandas和Openpyxl等库可以实现数据的导入、导出和自动化处理,从基础的数据读取和清洗到复杂... 目录python导入导出Excel数据开启数据之旅:为什么Python是Excel数据处理的最佳拍档

在Pandas中进行数据重命名的方法示例

《在Pandas中进行数据重命名的方法示例》Pandas作为Python中最流行的数据处理库,提供了强大的数据操作功能,其中数据重命名是常见且基础的操作之一,本文将通过简洁明了的讲解和丰富的代码示例,... 目录一、引言二、Pandas rename方法简介三、列名重命名3.1 使用字典进行列名重命名3.编