C++卷积神经网络实例:tiny_cnn代码详解(6)——average_pooling_layer层结构类分析

本文主要是介绍C++卷积神经网络实例:tiny_cnn代码详解(6)——average_pooling_layer层结构类分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  在之前的博文中我们着重分析了convolutional_layer类的代码结构,在这篇博文中分析对应的下采样层average_pooling_layer类:

  一、下采样层的作用

  下采样层的作用理论上来说由两个,主要是降维,其次是提高一点特征的鲁棒性。在LeNet-5模型中,每一个卷积层后面都跟着一个下采样层:

  原因就是当图像在经过卷积层之后,由于每个卷积层都有多个卷积模板,直接导致卷积结果输出的特征矩阵相对于输入的数据矩阵其维数要提高数倍,再加上存在若干卷积层(谷歌的某些模型甚至超过100层),若不进行降维操作,最后的特征维数可想而知,因此在这里下采样层就充当了一个特征降维的角色。比如这里用的是2*2模板均值下采样,说白了就是四个相邻像素经过加权计算变成一个,维数变为原来的四分之一,降维性能显而易见。至于鲁棒性问题,理论上只要是合理的降维手段,对鲁棒性都会有一定的提升(当然这是我的个人观点)。

  二、average_pooling_layer类结构

  average_pooling_layer类同样继承自基类partial_connected_layer,和前文中所说的convolutional_layer类算是相同继承层次,因此与convolutional_layer类在结构上也非常相似,但下采样层由于其功能相对单一,因此在结构上比convolutional_layer类要简洁不少

  2.1 成员变量

  average_pooling_layer类的成员变量一共有两个,分别保存输入数据矩阵的属性和下采样后输出特征矩阵的属性:

  至于有关layer_size_t、index3d等类型的相关知识在上一篇博客中已经进行了详细介绍,这里不再赘述。

  2.2 构造函数

  average_pooling_layer类的构造函数十分简洁,基本上就是调用了基类partial_connected_layer的构造函数,然后在完成自己类中两个成员变量的初始化而已:

  这里稍稍介绍一下pooling_size_mismatch()函数。这是一个定义在基类layer中的函数,作用就是抛出尺寸异常的信息,而在每一层中对尺寸匹配的检验标准都不同,因此各个子类在调用这个函数给出异常信息时,需要依据对应层的标准来进行判断,比如在下采样层,我们认为如果输入数据矩阵的尺寸不是下采样窗口的整数倍时,则无法正常进行分块降维,即视为尺寸不匹配,抛出尺寸异常信息:

  2.3 其他函数

  除了构造函数,下采样层还提供了一些其他函数,包括下采样矩阵权重初始化函数和偏置初始化函数(在下采样的过程中同样需要加上偏置)init_connection(),权重矩阵设置函数connect_kernel(),以及输出特征矩阵图像化的转换函数output_to_image(),以上这些函数与前一篇博文中convolutional_layer类中的对应的函数功能可以说是完全相同(毕竟都是继承与同一个基类),这里不再赘述。

  三、注意事项

  1、下采样层后的激活函数

  在实际的卷积神经网络模型中,对卷积特征输出进行下采样之后,紧接着应该送入激活函数中,换句话说下采样层和激活函数应该是紧密相关的。不过在这里作者并没有将激活函数直接放在average_pooling_layer类中,而是将每个激活函数都封装成对应的类,并放到activation命名空间下:

  2、LeNet-5模型的经典性

  这里在介绍卷积伸神经网络模型时一直沿用LeNet-5模型,主要是因为它既结构简单又堪称CNN的经典之作,但在实际应用中卷积神经网络的层数可不止这些,举个例子,2014年的VGG模型已经将网络扩展到16层的深度,至于各大深度学习研究院内部已经将网络加深到多少层这个已经不得而知,总之一两块泰坦级别的N卡是不够用的。



如果觉得这篇文章对您有所启发,欢迎关注我的公众号,我会尽可能积极和大家交流,谢谢。


这篇关于C++卷积神经网络实例:tiny_cnn代码详解(6)——average_pooling_layer层结构类分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1115499

相关文章

java图像识别工具类(ImageRecognitionUtils)使用实例详解

《java图像识别工具类(ImageRecognitionUtils)使用实例详解》:本文主要介绍如何在Java中使用OpenCV进行图像识别,包括图像加载、预处理、分类、人脸检测和特征提取等步骤... 目录前言1. 图像识别的背景与作用2. 设计目标3. 项目依赖4. 设计与实现 ImageRecogni

Java访问修饰符public、private、protected及默认访问权限详解

《Java访问修饰符public、private、protected及默认访问权限详解》:本文主要介绍Java访问修饰符public、private、protected及默认访问权限的相关资料,每... 目录前言1. public 访问修饰符特点:示例:适用场景:2. private 访问修饰符特点:示例:

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

详解Java如何向http/https接口发出请求

《详解Java如何向http/https接口发出请求》这篇文章主要为大家详细介绍了Java如何实现向http/https接口发出请求,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 用Java发送web请求所用到的包都在java.net下,在具体使用时可以用如下代码,你可以把它封装成一

JAVA系统中Spring Boot应用程序的配置文件application.yml使用详解

《JAVA系统中SpringBoot应用程序的配置文件application.yml使用详解》:本文主要介绍JAVA系统中SpringBoot应用程序的配置文件application.yml的... 目录文件路径文件内容解释1. Server 配置2. Spring 配置3. Logging 配置4. Ma

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码

《在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码》在MyBatis的XML映射文件中,trim元素用于动态添加SQL语句的一部分,处理前缀、后缀及多余的逗号或连接符,示... 在MyBATis的XML映射文件中,<trim>元素用于动态地添加SQL语句的一部分,例如SET或W

mac中资源库在哪? macOS资源库文件夹详解

《mac中资源库在哪?macOS资源库文件夹详解》经常使用Mac电脑的用户会发现,找不到Mac电脑的资源库,我们怎么打开资源库并使用呢?下面我们就来看看macOS资源库文件夹详解... 在 MACOS 系统中,「资源库」文件夹是用来存放操作系统和 App 设置的核心位置。虽然平时我们很少直接跟它打交道,但了

关于Maven中pom.xml文件配置详解

《关于Maven中pom.xml文件配置详解》pom.xml是Maven项目的核心配置文件,它描述了项目的结构、依赖关系、构建配置等信息,通过合理配置pom.xml,可以提高项目的可维护性和构建效率... 目录1. POM文件的基本结构1.1 项目基本信息2. 项目属性2.1 引用属性3. 项目依赖4. 构

Rust 数据类型详解

《Rust数据类型详解》本文介绍了Rust编程语言中的标量类型和复合类型,标量类型包括整数、浮点数、布尔和字符,而复合类型则包括元组和数组,标量类型用于表示单个值,具有不同的表示和范围,本文介绍的非... 目录一、标量类型(Scalar Types)1. 整数类型(Integer Types)1.1 整数字