Mamba 2的发布是否可以撼动Transformer模型的AI大一统的江湖地位

本文主要是介绍Mamba 2的发布是否可以撼动Transformer模型的AI大一统的江湖地位,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Transformer模型

Transformer模型是深度学习领域的一种神经网络架构,特别适用于自然语言处理(NLP)任务。它由Vaswani等人在2017年的论文《Attention is All You Need》中提出。Transformer模型的关键创新在于其使用注意力机制,而不是传统的递归神经网络(RNN)或卷积神经网络(CNN)来处理序列数据。正是由于Transformer模型强大的注意力机制,让模型进行并行运算成功降低了训练时间,加速了模型的训练。

动图封面

1.架构概述

Transformer模型由两个主要部分组成:编码器(Encoder)和解码器(Decoder)。

  • 编码器:由多个相同的编码器层(通常是6层)堆叠而成。每个编码器层包含两个子层:多头自注意力机制(Multi-Head Self-Attention)和前馈神经网络(Feed Forward Neural Network),每个子层后都有一个Add & Norm层进行残差连接和规范化。
  • 解码器:由多个相同的解码器层(通常也是6层)堆叠而成。每个解码器层包含三个子层:Masked多头自注意力机制、编码器-解码器多头注意力机制(Encoder-Decoder Attention)和前馈神经网络。和编码器一样,每个子层后都有一个Add & Norm层。

2.注意力机制

注意力机制是Transformer的核心组件,它允许模型在处理一个元素时关注输入序列中的其他元素。Transformer使用的是Scaled Dot-Product Attention

  • Q(Queries):查询矩阵
  • K(Keys):键矩阵
  • V(Values):值矩阵
  • d_k:键向量的维度,用于缩放点积的结果

动图封面

以上过程展示了QKV三矩阵的来历,其中输入的 I 矩阵为已知矩阵,而Wq Wk Wv为未知矩阵,而注意力机制的过程便是需要优化其中的未知参数了。

动图封面

注意力机制计算的过程也是极其简单,根据注意力机制的计算公式,其Q矩阵乘以K矩阵的转置矩阵,然后乘以一个缩放系数后,再乘以v矩阵,就得到了注意力机制的计算结果。

正是注意力机制的强大算法,不仅NLP领域各种任务中可以采用 transformer 模型,而在计算机视觉任务中也成功采用了 transformer 模型,且效果显著,正是这样的模型统一,让人工智能领域一度认为 transformer 模型将会承担模型大一统的任务。

Mamba模型的兴起

随着模型越来越大,训练数据越来越庞大,其输入序列也越来越长。而我们知道 transformer 模型随着输入序列长度,其模型复杂度成平方的增加。这就无意导致了大量的内存开销,虽然 transformer 模型的优点在于可以并行运算,但是较大的内存开销无法进行模型有效的训练,如何能够找到一个既能降低内存开销,又能并行运算的模型成为了大家研究的对象。

Mamba 是一种新的状态空间模型架构,在语言建模等信息密集数据上显示出良好的性能,而以前的二次模型在 Transformers 方面存在不足。Mamba基于结构化状态空间模型的,并使用FlashAttention进行高效的硬件设计和实现。

Mamba 享有快速推理(吞吐量比 Transformer 高 5 倍)和序列长度线性缩放,并且其性能在高达百万长度序列的实际数据上得到了很多的提高。 作为通用序列模型骨干,Mamba 在语言、音频和基因组学等多种任务上实现了最先进的性能。 在语言建模方面, Mamba-3B 模型在预训练和下游任务方面都优于相同大小的 Transformer模型,并且与两倍大小的 Transformer 相匹配。

而本次 2 位作者在Mamba 的基础上,更新了Mamba模型,发布了Mamba 2 。

而Mamba 2 模型的论文就叫transformer are SSMs,transformer 模型本身就是一个状态空间模型。作者用了大量的篇幅介绍了 transformer 模型与状态空间的关系,既然两者有着密切的联系,那么 transformer 模型就可以结合状态空间模型的优点,并行运算的同时降低内存开销。

上图是不是很熟悉,这个跟Retnet模型解决的大模型不可能三角很像,都是为了解决大模型的内存开销与计算复杂度问题。而根据其Mamba 2 的注意力机制的计算公式跟标准的注意力公式就是删除了 soft max 计算,取而代之的是乘以了一个 L 矩阵。而Retnet模型是一个衰减系数矩阵D.

而L 矩阵同样是一个下三角矩阵,一来屏蔽未来的输入信息,另外一个便是帮忙输入数据计算单词与单词之间的相似性。后期我们将在动画详解 transformer 专栏中详细介绍Retnet与Mamba模型,并用动画的方式来介绍相关的技术难点

Mamba 采用状态空间模型作为其核心架构,而非 Transformer 的自注意力机制。状态空间模型通过递归方式更新隐藏状态,能够更高效地处理长序列数据。Mamba 的架构允许在训练过程中进行高度并行化,从而显著缩短训练时间。与 Transformer 的平方复杂度不同,Mamba 在序列长度上的复杂度为线性,这意味着它在处理长序列时效率更高。虽然 Mamba 旨在提高效率,但初步研究表明,它在各种序列建模任务上都能保持与 Transformer 相当的性能。

Mamba的模型框架不仅可以进行高度并行化,而可以通过状态空间的递归方式更新模型状态,这就可以让模型可以进行递归方式的训练,降低内存开销。

Mamba2 的发布证明了 transformer 模型就是一个SSMs模型,完全可以采用递归的方式降低内存开销,这个跟 retnet模型的分块并行与块与块进行递归操作类似,都成功降低了内存开销。当然Mamba2模型是否在各个人工智能领域任务上都适合使用,需要各大模型的不断适配。而 transformer 模型已经被很多大模型成功使用,是否可以进行替代,需要模型与时间的验证。

https://arxiv.org/pdf/2405.21060更多transformer,VIT,swin tranformer
参考头条号:人工智能研究所
v号:启示AI科技

 动画详解transformer  在线教程

这篇关于Mamba 2的发布是否可以撼动Transformer模型的AI大一统的江湖地位的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1114288

相关文章

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

AI绘图怎么变现?想做点副业的小白必看!

在科技飞速发展的今天,AI绘图作为一种新兴技术,不仅改变了艺术创作的方式,也为创作者提供了多种变现途径。本文将详细探讨几种常见的AI绘图变现方式,帮助创作者更好地利用这一技术实现经济收益。 更多实操教程和AI绘画工具,可以扫描下方,免费获取 定制服务:个性化的创意商机 个性化定制 AI绘图技术能够根据用户需求生成个性化的头像、壁纸、插画等作品。例如,姓氏头像在电商平台上非常受欢迎,

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

从去中心化到智能化:Web3如何与AI共同塑造数字生态

在数字时代的演进中,Web3和人工智能(AI)正成为塑造未来互联网的两大核心力量。Web3的去中心化理念与AI的智能化技术,正相互交织,共同推动数字生态的变革。本文将探讨Web3与AI的融合如何改变数字世界,并展望这一新兴组合如何重塑我们的在线体验。 Web3的去中心化愿景 Web3代表了互联网的第三代发展,它基于去中心化的区块链技术,旨在创建一个开放、透明且用户主导的数字生态。不同于传统

AI一键生成 PPT

AI一键生成 PPT 操作步骤 作为一名打工人,是不是经常需要制作各种PPT来分享我的生活和想法。但是,你们知道,有时候灵感来了,时间却不够用了!😩直到我发现了Kimi AI——一个能够自动生成PPT的神奇助手!🌟 什么是Kimi? 一款月之暗面科技有限公司开发的AI办公工具,帮助用户快速生成高质量的演示文稿。 无论你是职场人士、学生还是教师,Kimi都能够为你的办公文

高效+灵活,万博智云全球发布AWS无代理跨云容灾方案!

摘要 近日,万博智云推出了基于AWS的无代理跨云容灾解决方案,并与拉丁美洲,中东,亚洲的合作伙伴面向全球开展了联合发布。这一方案以AWS应用环境为基础,将HyperBDR平台的高效、灵活和成本效益优势与无代理功能相结合,为全球企业带来实现了更便捷、经济的数据保护。 一、全球联合发布 9月2日,万博智云CEO Michael Wong在线上平台发布AWS无代理跨云容灾解决方案的阐述视频,介绍了

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}