day41| 01背包问题一 01背包问题二(滚动数组篇)416. 分割等和子集 1049.最后一块石头的重量II 494. 目标和 474. 一和零

本文主要是介绍day41| 01背包问题一 01背包问题二(滚动数组篇)416. 分割等和子集 1049.最后一块石头的重量II 494. 目标和 474. 一和零,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 背景介绍
  • 01背包问题一
    • 思路
    • 方法一
    • 方法二
  • 01背包问题二(滚动数组篇)
    • 思路
    • 方法一
    • 方法二
  • 416. 分割等和子集
    • 思路
    • 方法一
  • 1049.最后一块石头的重量II
    • 思路
    • 方法一
  • 494. 目标和
    • 思路
    • 方法
    • 方法二 回溯法
  • 474. 一和零
    • 思路
    • 方法
  • 总结


由于笔试的时候会判重,而这里面的代码都是我自己写的,所以以后的博客都要求会员才能看,感谢理解

背景介绍

在这里插入图片描述

01背包问题一

01背包问题:有n件物品和一个最多能背重量为w 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。
暴力求解
每一件物品其实只有两个状态,取或者不取,所以可以使用回溯法搜索出所有的情况,那么时间复杂度就是 o ( 2 n ) o(2^n) o(2n),这里的n表示物品数量。

所以暴力的解法是指数级别的时间复杂度。进而才需要动态规划的解法来进行优化!

思路

在这里插入图片描述
依然动规五部曲分析一波。

  1. ❤️确定dp数组以及下标的含义
    对于背包问题,有一种写法, 是使用二维数组,即dp[i][j] 表示从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少
  2. ❤️确定递推公式
    在这里插入图片描述
  3. dp数组如何初始化
    首先从dp[i][j]的定义出发,如果背包容量j为0的话,即dp[i][0],无论是选取哪些物品,背包价值总和一定为0。
    纵向初始化:dp[0][j],即:i为0,存放编号0的物品的时候,各个容量的背包所能存放的最大价值。
    那么很明显当 j < weight[0]的时候,dp[0][j] 应该是 0,因为背包容量比编号0的物品重量还小。
    当j >= weight[0]时,dp[0][j] 应该是value[0],因为背包容量放足够放编号0物品。
    在这里插入图片描述
    这里还讲了一个其他位置的初始化:任意都可以,因为都会被覆盖
  4. 遍历顺序:两层for循环,
    先遍历 物品还是先遍历背包重量呢?
    其实都可以!! 但是先遍历物品更好理解。

    在这里插入图片描述

方法一

自己写的注意事项:

  1. 一开始没有完全理解,dp二维数组的列数是bagweight,而不是len(weight)
  2. 写代码的时候一定是bagweight+1啊,因为bagweight是必须要算在里面的
  3. 此外,卡吗网输入的都是str类型要注意哦
def test_2_wei_bag_problem1(weight, value, bagweight):# 二维数组dp = [[0] * (bagweight + 1) for _ in range(len(weight))]# 初始化for j in range(weight[0], bagweight + 1):dp[0][j] = value[0]# weight数组的大小就是物品个数for i in range(1, len(weight)):  # 遍历物品for j in range(bagweight + 1):  # 遍历背包容量if j < weight[i]:dp[i][j] = dp[i - 1][j]else:dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i])return dp[len(weight) - 1][bagweight]if __name__ == "__main__":weight = [1, 3, 4]value = [15, 20, 30]bagweight = 4result 

这篇关于day41| 01背包问题一 01背包问题二(滚动数组篇)416. 分割等和子集 1049.最后一块石头的重量II 494. 目标和 474. 一和零的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1107796

相关文章

好题——hdu2522(小数问题:求1/n的第一个循环节)

好喜欢这题,第一次做小数问题,一开始真心没思路,然后参考了网上的一些资料。 知识点***********************************无限不循环小数即无理数,不能写作两整数之比*****************************(一开始没想到,小学没学好) 此题1/n肯定是一个有限循环小数,了解这些后就能做此题了。 按照除法的机制,用一个函数表示出来就可以了,代码如下

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

poj2576(二维背包)

题意:n个人分成两组,两组人数只差小于1 , 并且体重只差最小 对于人数要求恰好装满,对于体重要求尽量多,一开始没做出来,看了下解题,按照自己的感觉写,然后a了 状态转移方程:dp[i][j] = max(dp[i][j],dp[i-1][j-c[k]]+c[k]);其中i表示人数,j表示背包容量,k表示输入的体重的 代码如下: #include<iostream>#include<

hdu2159(二维背包)

这是我的第一道二维背包题,没想到自己一下子就A了,但是代码写的比较乱,下面的代码是我有重新修改的 状态转移:dp[i][j] = max(dp[i][j], dp[i-1][j-c[z]]+v[z]); 其中dp[i][j]表示,打了i个怪物,消耗j的耐力值,所得到的最大经验值 代码如下: #include<iostream>#include<algorithm>#include<

csu(背包的变形题)

题目链接 这是一道背包的变形题目。好题呀 题意:给n个怪物,m个人,每个人的魔法消耗和魔法伤害不同,求打死所有怪物所需的魔法 #include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<queue>#include<set>//#include<u>#include<map

hdu2241(二分+合并数组)

题意:判断是否存在a+b+c = x,a,b,c分别属于集合A,B,C 如果用暴力会超时,所以这里用到了数组合并,将b,c数组合并成d,d数组存的是b,c数组元素的和,然后对d数组进行二分就可以了 代码如下(附注释): #include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<que

hdu1011(背包树形DP)

没有完全理解这题, m个人,攻打一个map,map的入口是1,在攻打某个结点之前要先攻打其他一个结点 dp[i][j]表示m个人攻打以第i个结点为根节点的子树得到的最优解 状态转移dp[i][ j ] = max(dp[i][j], dp[i][k]+dp[t][j-k]),其中t是i结点的子节点 代码如下: #include<iostream>#include<algorithm

hdu1171(母函数或多重背包)

题意:把物品分成两份,使得价值最接近 可以用背包,或者是母函数来解,母函数(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v) 其中指数为价值,每一项的数目为(该物品数+1)个 代码如下: #include<iostream>#include<algorithm>

购买磨轮平衡机时应该注意什么问题和技巧

在购买磨轮平衡机时,您应该注意以下几个关键点: 平衡精度 平衡精度是衡量平衡机性能的核心指标,直接影响到不平衡量的检测与校准的准确性,从而决定磨轮的振动和噪声水平。高精度的平衡机能显著减少振动和噪声,提高磨削加工的精度。 转速范围 宽广的转速范围意味着平衡机能够处理更多种类的磨轮,适应不同的工作条件和规格要求。 振动监测能力 振动监测能力是评估平衡机性能的重要因素。通过传感器实时监

hdu 2602 and poj 3624(01背包)

01背包的模板题。 hdu2602代码: #include<stdio.h>#include<string.h>const int MaxN = 1001;int max(int a, int b){return a > b ? a : b;}int w[MaxN];int v[MaxN];int dp[MaxN];int main(){int T;int N, V;s