基于huggingface peft进行qwen1.5-7b-chat训练/推理/服务发布

2024-08-26 05:20

本文主要是介绍基于huggingface peft进行qwen1.5-7b-chat训练/推理/服务发布,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、huggingface peft微调框架

1、定义

PEFT 是一个大型预训练模型提供多种高效微方法的Python库。

调传统范式是针对每个下游任模型参数。大模型参数大,种方式得极其昂和不切实际PEFT采用的高效做法是训练少量提示参数(Prompt Tuning)或使用低秩适(LORA)等重新参数化方法来减少微调时训练参数的数量。

二、qwen-1.5b-chat模型训练/推理/服务

1、基础环境准备

datasets==2.21.0

transformers==4.37.0

torch==1.13.0

accelerate==0.30.1

peft==0.4.0

numpy==1.26.4

Jinja2==3.1.4

2、人设定制数据准备

[

    {

        "instruction": "你是谁?",

        "input": "",

        "output": "我是一个语言模型,我叫小飞同学,可以为您做很多事情。请问您有什么问题需要我帮助吗?"

    },

    {

        "instruction": "你是什么?",

        "input": "",

        "output": "我是一个语言模型,我叫小飞同学,可以为您做很多事情。请问您有什么问题需要我帮助吗?"

    },

    {

        "instruction": "请问您是?",

        "input": "",

        "output": "我是一个语言模型,我叫小飞同学,可以为您做很多事情。请问您有什么问题需要我帮助吗?"

    },

    {

        "instruction": "你叫什么?",

        "input": "",

        "output": "我是一个语言模型,我叫小飞同学,可以为您做很多事情。请问您有什么问题需要我帮助吗?"

},

     {

        "instruction": "你的身份是?",

        "input": "",

        "output": "我是一个语言模型,我叫小飞同学,可以为您做很多事情。请问您有什么问题需要我帮助吗?"

    }

]

2、模型训练

from datasets import Dataset

import pandas as pd

from transformers import AutoTokenizer, AutoModelForCausalLM, DataCollatorForSeq2Seq, TrainingArguments, Trainer, GenerationConfig

# JSON文件转换为CSV文件

df = pd.read_json('./train.json')

ds = Dataset.from_pandas(df)

model_path = './huggingface/model/Qwen1.5-7B-Chat'

tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False, trust_remote_code=True)

def process_func(example):

    MAX_LENGTH = 384   

    input_ids, attention_mask, labels = [], [], []

    instruction = tokenizer(f"<|im_start|>system\n现在你要扮演人工智能智能客服助手--小飞同学<|im_end|>\n<|im_start|>user\n{example['instruction'] + example['input']}<|im_end|>\n<|im_start|>assistant\n", add_special_tokens=False

    response = tokenizer(f"{example['output']}", add_special_tokens=False)

    input_ids = instruction["input_ids"] + response["input_ids"] + [tokenizer.pad_token_id]

    attention_mask = instruction["attention_mask"] + response["attention_mask"] + [1

    labels = [-100] * len(instruction["input_ids"]) + response["input_ids"] + [tokenizer.pad_token_id]

    if len(input_ids) > MAX_LENGTH:  # 做一个截断

        input_ids = input_ids[:MAX_LENGTH]

        attention_mask = attention_mask[:MAX_LENGTH]

        labels = labels[:MAX_LENGTH]

    return {

        "input_ids": input_ids,

        "attention_mask": attention_mask,

        "labels": labels

    }

tokenized_id = ds.map(process_func, remove_columns=ds.column_names)

import torch

model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto",torch_dtype=torch.bfloat16)

model.enable_input_require_grads()

from peft import LoraConfig, TaskType, get_peft_model

config = LoraConfig(

    task_type=TaskType.CAUSAL_LM,

    target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"],

    inference_mode=False, # 训练模式

    r=8, # Lora

    lora_alpha=32, # Lora alaph,具体作用参见 Lora 原理

    lora_dropout=0.1# Dropout 比例

)

model = get_peft_model(model, config)

args = TrainingArguments(

    output_dir="./output",

    per_device_train_batch_size=4,

    gradient_accumulation_steps=4,

    logging_steps=10,

    num_train_epochs=10,

    save_steps=50,

    learning_rate=1e-4,

    save_on_each_node=True,

    gradient_checkpointing=True

)

trainer = Trainer(

    model=model,

    args=args,

    train_dataset=tokenized_id,

    data_collator=DataCollatorForSeq2Seq(tokenizer=tokenizer, padding=True),

)

trainer.train()

模型输出目录截图:

3、模型推理

from transformers import AutoModelForCausalLM, AutoTokenizer

import torch

from peft import PeftModel

model_path = './huggingface/model/Qwen1.5-7B-Chat'

lora_path = './output/checkpoint-50'

# 加载tokenizer

tokenizer = AutoTokenizer.from_pretrained(model_path)

# 加载模型

model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto",torch_dtype=torch.bfloat16)

from peft import LoraConfig, TaskType

config = LoraConfig(

    task_type=TaskType.CAUSAL_LM,

    target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"],

    inference_mode=True, # 训练模式

    r=8, # Lora

    lora_alpha=32, # Lora alaph,具体作用参见 Lora 原理

    lora_dropout=0.1# Dropout 比例

)

# 加载lora权重

model = PeftModel.from_pretrained(model, model_id=lora_path, config=config)

prompt = "你是星火大模型吗?"

messages = [

    {"role": "system", "content": "现在你要扮演人工智能智能客服助手--小飞同学"},

    {"role": "user", "content": prompt}

]

text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)

model_inputs = tokenizer([text], return_tensors="pt").to('cuda')

generated_ids = model.generate(

    input_ids=model_inputs.input_ids,

    max_new_tokens=512

)

generated_ids = [

    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)

]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]

print(response)

模型推理日志截图:

4、基于FastAPI的sse协议模型服务

import uvicorn

from fastapi import FastAPI

from transformers import AutoModelForCausalLM, AutoTokenizer ,TextStreamer,TextIteratorStreamer

from threading import Thread

import torch

from peft import LoraConfig, TaskType, PeftModel

from sse_starlette.sse import EventSourceResponse

import json

# transfomershuggingface提供的一个工具,便于加载transformer结构的模型

app = FastAPI()

def load_model():

    model_path = './huggingface/model/Qwen1.5-7B-Chat'

    # 加载tokenizer

    tokenizer = AutoTokenizer.from_pretrained(model_path)

    # 加载模型(加速库attn_implementation="flash_attention_2"

    model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto",torch_dtype=torch.bfloat16

    # 加载lora权重

    lora_path = './output/checkpoint-50'

    config = LoraConfig(

        task_type=TaskType.CAUSAL_LM,

        target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"],

        inference_mode=True, # 训练模式

        r=8, # Lora

        lora_alpha=32, # Lora alaph,具体作用参见 Lora 原理

        lora_dropout=0.1# Dropout 比例

    )

    model = PeftModel.from_pretrained(model, model_id=lora_path, config=config)

    return tokenizer,model

tokenizer,model = load_model()

def infer_model(tokenizer,model):

    prompt = "你是星火大模型吗?"

    messages = [

        {"role": "system", "content": "现在你要扮演人工智能智能客服助手--小飞同学"},

        {"role": "user", "content": prompt}

    ]

    #数据提取

    text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)

    model_inputs = tokenizer([text], return_tensors="pt").to('cuda')

    #streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)

    streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)

    #模型推理

    from threading import Thread

    generation_kwargs = dict(model_inputs, streamer=streamer, max_new_tokens=512)

    thread = Thread(target=model.generate, kwargs=generation_kwargs)

    thread.start()

    for res in streamer:

        yield json.dumps({"data":res},ensure_ascii=False)

@app.get('/predict')

async def predict():

    #return infer_model(tokenizer,model)

    return EventSourceResponse(infer_model(tokenizer,model))

if __name__ == '__main__':

    # 在调试的时候开源加入一个reload=True的参数,正式启动的时候可以去掉

    uvicorn.run(app, host="0.0.0.0", port=6605, log_level="info")

客户端调用示例:

import json

import requests

import time

def listen_sse(url):

    # 发送GET请求到SSE端点

    with requests.get(url, stream=True, timeout=20) as response:

        try:

            # 确保请求成功

            response.raise_for_status()

            # 逐行读取响应内容

            result = ""

            for line in response.iter_lines():

                if line:

                    event_data = line.decode('utf-8')

                    if event_data.startswith('data:'):

                        # 去除'data:'前缀,获取实际数据

                        line = event_data.lstrip('data:')

                        line_data = json.loads(line)

                        result += line_data["data"]

                        print(result)

       except requests.exceptions.HTTPError as err:

            print(f"HTTP error: {err}")

        except Exception as err:

            print(f"An error occurred: {err}")

            return

sse_url = 'http://127.0.0.1:6605/predict'

listen_sse(sse_url

服务推理流式输出截图:

这篇关于基于huggingface peft进行qwen1.5-7b-chat训练/推理/服务发布的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1107664

相关文章

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

windos server2022的配置故障转移服务的图文教程

《windosserver2022的配置故障转移服务的图文教程》本文主要介绍了windosserver2022的配置故障转移服务的图文教程,以确保服务和应用程序的连续性和可用性,文中通过图文介绍的非... 目录准备环境:步骤故障转移群集是 Windows Server 2022 中提供的一种功能,用于在多个

使用Python进行文件读写操作的基本方法

《使用Python进行文件读写操作的基本方法》今天的内容来介绍Python中进行文件读写操作的方法,这在学习Python时是必不可少的技术点,希望可以帮助到正在学习python的小伙伴,以下是Pyth... 目录一、文件读取:二、文件写入:三、文件追加:四、文件读写的二进制模式:五、使用 json 模块读写

解决systemctl reload nginx重启Nginx服务报错:Job for nginx.service invalid问题

《解决systemctlreloadnginx重启Nginx服务报错:Jobfornginx.serviceinvalid问题》文章描述了通过`systemctlstatusnginx.se... 目录systemctl reload nginx重启Nginx服务报错:Job for nginx.javas

使用zabbix进行监控网络设备流量

《使用zabbix进行监控网络设备流量》这篇文章主要为大家详细介绍了如何使用zabbix进行监控网络设备流量,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录安装zabbix配置ENSP环境配置zabbix实行监控交换机测试一台liunx服务器,这里使用的为Ubuntu22.04(

五大特性引领创新! 深度操作系统 deepin 25 Preview预览版发布

《五大特性引领创新!深度操作系统deepin25Preview预览版发布》今日,深度操作系统正式推出deepin25Preview版本,该版本集成了五大核心特性:磐石系统、全新DDE、Tr... 深度操作系统今日发布了 deepin 25 Preview,新版本囊括五大特性:磐石系统、全新 DDE、Tree

Linux Mint Xia 22.1重磅发布: 重要更新一览

《LinuxMintXia22.1重磅发布:重要更新一览》Beta版LinuxMint“Xia”22.1发布,新版本基于Ubuntu24.04,内核版本为Linux6.8,这... linux Mint 22.1「Xia」正式发布啦!这次更新带来了诸多优化和改进,进一步巩固了 Mint 在 Linux 桌面

在Pandas中进行数据重命名的方法示例

《在Pandas中进行数据重命名的方法示例》Pandas作为Python中最流行的数据处理库,提供了强大的数据操作功能,其中数据重命名是常见且基础的操作之一,本文将通过简洁明了的讲解和丰富的代码示例,... 目录一、引言二、Pandas rename方法简介三、列名重命名3.1 使用字典进行列名重命名3.编