电路笔记(PCB):数字滤波电路的拉普拉斯变换与零极点分析

2024-08-26 05:04

本文主要是介绍电路笔记(PCB):数字滤波电路的拉普拉斯变换与零极点分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

拉普拉斯变换基础

拉普拉斯变换

拉普拉斯变换是一种积分变换,用于将一个时间域的函数(通常是信号或系统的响应)转换为一个复频域的函数。这种变换可以简化许多微分方程和线性系统分析的过程。其定义为:
L { f ( t ) } = F ( s ) = ∫ 0 ∞ f ( t ) e − s t d t \mathcal{L}\{f(t)\} = F(s) = \int_{0}^{\infty} f(t) e^{-st} \, dt L{f(t)}=F(s)=0f(t)estdt

其中:

  • f ( t ) f(t) f(t) 是原始时间域函数。

  • F ( s ) F(s) F(s) 是拉普拉斯变换后的复频域函数。

  • s s s 是复数频率变量。

  • 时域中电路元件的基本关系

    • 电阻 R R R:电压 V ( t ) V(t) V(t) 和电流 I ( t ) I(t) I(t) 之间的关系是 V ( t ) = R ⋅ I ( t ) V(t) = R \cdot I(t) V(t)=RI(t)
    • 电感 L L L:电压 V ( t ) V(t) V(t) 和电流 I ( t ) I(t) I(t) 之间的关系是 V ( t ) = L d I ( t ) d t V(t) = L \frac{dI(t)}{dt} V(t)=LdtdI(t)
    • 电容 C C C:电压 V ( t ) V(t) V(t) 和电流 I ( t ) I(t) I(t) 之间的关系是 V ( t ) = 1 C ∫ I ( t ) d t V(t) = \frac{1}{C} \int I(t) \, dt V(t)=C1I(t)dt

拉普拉斯域中电路元件的基本关系

  • 拉普拉斯变换将时间导数转换为 s s s 的乘法,将积分转换为除以 s s s的操作。拉普拉斯变换将时间域中的导数转换为频域中的乘法操作。例如,对于一个函数 f ( t ) f(t) f(t),其一阶导数 f ′ ( t ) f'(t) f(t) 在拉普拉斯变换下变为 s F ( s ) − f ( 0 ) sF(s) - f(0) sF(s)f(0)。同样地,积分 ∫ 0 t f ( τ ) d τ \int_0^t f(\tau) \, d\tau 0tf(τ)dτ 在拉普拉斯变换下变为 1 s F ( s ) \frac{1}{s}F(s) s1F(s)。这样,拉普拉斯变换使得时间导数和积分在频域中变得更容易处理。
  1. 电阻 R R R

    • 在时域中, V ( t ) = R ⋅ I ( t ) V(t) = R \cdot I(t) V(t)=RI(t)
    • 拉普拉斯变换后, V ( s ) = R ⋅ I ( s ) V(s) = R \cdot I(s) V(s)=RI(s)
    • 阻抗定义为 Z ( s ) = V ( s ) I ( s ) = R Z(s) = \frac{V(s)}{I(s)} = R Z(s)=I(s)V(s)=R,这说明电阻的阻抗在拉普拉斯域中是一个常数 R R R
  2. 电感 L L L

    • 在时域中, V ( t ) = L d I ( t ) d t V(t) = L \frac{dI(t)}{dt} V(t)=LdtdI(t)
    • 拉普拉斯变换后, V ( s ) = L ⋅ s ⋅ I ( s ) − L ⋅ I ( 0 ) V(s) = L \cdot s \cdot I(s) - L \cdot I(0) V(s)=LsI(s)LI(0)
    • 如果电感的初始电流 I ( 0 ) = 0 I(0) = 0 I(0)=0,则 V ( s ) = L ⋅ s ⋅ I ( s ) V(s) = L \cdot s \cdot I(s) V(s)=LsI(s)
    • 阻抗定义为 Z ( s ) = V ( s ) I ( s ) = L ⋅ s Z(s) = \frac{V(s)}{I(s)} = L \cdot s Z(s)=I(s)V(s)=Ls
  3. 电容 C C C

    • 在时域中, V ( t ) = 1 C ∫ I ( t ) d t V(t) = \frac{1}{C} \int I(t) \, dt V(t)=C1I(t)dt
    • 拉普拉斯变换后, V ( s ) = 1 C ⋅ I ( s ) s − 1 C ⋅ I ( 0 ) s V(s) = \frac{1}{C} \cdot \frac{I(s)}{s} - \frac{1}{C} \cdot \frac{I(0)}{s} V(s)=C1sI(s)C1sI(0)
    • 如果电容的初始电压 V ( 0 ) = 0 V(0) = 0 V(0)=0,则 V ( s ) = 1 C ⋅ I ( s ) s V(s) = \frac{1}{C} \cdot \frac{I(s)}{s} V(s)=C1sI(s)
    • 阻抗定义为 Z ( s ) = V ( s ) I ( s ) = 1 s ⋅ C Z(s) = \frac{V(s)}{I(s)} = \frac{1}{s \cdot C} Z(s)=I(s)V(s)=sC1
    • 注: i ( t ) = C ∗ d V ( t ) d t i(t)=C*\frac{dV(t)}{dt} i(t)=CdtdV(t),也可得到 I ( s ) = C ∗ s ∗ V ( s ) I(s)=C*s* V(s) I(s)=CsV(s)
    • 注: s = j ω s=j\omega s=时,阻抗

滤波器的数学表示

  • 让我们首先强调拉普拉斯域和相量域中的阻抗概念:
    所有电气工程信号都存在于时域中,其中时间t是自变量。对于正弦信号,可以将时域信号转换为相量域对于不一定是正弦的一般信号,可以将时域信号转换为拉普拉斯域信号

系统传递函数

  • 滤波器的两端分别为输入电压(或电流)和输出电流(或电流),滤波器将一个复数映射到另一个复数。滤波器实际上构建了一个复数的映射关系,所以滤波器可以用一个复变量函数表示。

  • 零点(Zeros):系统的零点是使得系统传递函数的分子为零的复数值。它们决定了系统的频率响应在这些频率上的衰减特性。当 H ( z ) = 0 H(z) = 0 H(z)=0 时,意味着滤波器在频率为 0 时的增益为 0。在分贝(dB)尺度下,增益 Gain (dB) = 20 ⋅ log ⁡ 10 ( 0 ) = − ∞ dB \text{Gain (dB)} = 20 \cdot \log_{10}(0)=-\infty \text{ dB} Gain (dB)=20log10(0)= dB,这表示滤波器在 z z z处完全衰减信号。

  • 极点(Poles):系统的极点是使得系统传递函数的分母为零的复数值。极点影响系统的稳定性和响应速度。

  • 电路的传递函数 H ( s ) H(s) H(s)是输入信号和输出信号之间的关系在s域的表示。传递函数的形式为:

H ( s ) = A ( s ) B ( s ) = a m s m + a m − 1 s m − 1 + ⋯ + a 1 s + 1 b m s n + b m − 1 s n − 1 + ⋯ + b 1 s + 1 H(s) = \frac{A(s)}{B(s)}=\frac{a_ms^m+a_{m-1}s^{m-1}+\dots +a_1s+1 }{b_ms^n+b_{m-1}s^{n-1}+\dots +b_1s+1 } H(s)=B(s)A(s)=bmsn+bm1sn1++b1s+1amsm+am1sm1++a1s+1

  • 其中, A ( s ) A(s) A(s) 是分子多项式(与零点相关), B ( s ) B(s) B(s) 是分母多项式(与极点相关)。因式分解可得到:
    H ( s ) = A ( s ) B ( s ) = K ∗ Π i m ( s − z i ) Π j n ( s − p j ) H(s) = \frac{A(s)}{B(s)}=K*\frac{\Pi_{i}^{m}(s-z_i) }{\Pi_{j}^{n}(s-p_j) } H(s)=B(s)A(s)=KΠjn(spj)Πim(szi)

  • 因为复数乘法能够视为一种操作(长度倍增和角度增加),所以可以得到

∣ H ( s ) ∣ = K ∗ Π i = 1 m ( ∣ s − z i ∣ ) Π n = 1 j ( ∣ s − p j ∣ ) |H(s)| =K*\frac{\Pi_{i=1}^{m}(|s-z_i|) }{\Pi_{n=1}^{j}(|s-p_j|) } H(s)=KΠn=1j(spj)Πi=1m(szi)

∠ H ( s ) = ∑ i = 1 m ∠ ( s − z i ) − ∑ j = 1 n ∠ ( s − p i ) \angle H(s) = \sum _{i=1}^{m} \angle (s-z_i) - \sum _{j=1}^{n} \angle (s-p_i) H(s)=i=1m(szi)j=1n(spi)

  • 注:以上公式中 ∣ s − p j ∣ |s-p_j| spj为两个复数点的二维之间距离, ∠ ( s − p i ) \angle(s-p_i) (spi)为两个复数向量的夹角。

jw与H(jw)

  • 滤波器的 H ( j Ω ) H(j\Omega) H(jΩ) 是滤波器的频率响应,它描述了滤波器对不同频率成分的增益和相位响应。

  • j Ω j\Omega jΩ 表示频率变量,其中 Ω \Omega Ω 是角频率,单位为弧度每秒。

  • H ( j Ω ) H(j\Omega) H(jΩ) 是一个复数函数,其模值 ∣ H ( j Ω ) ∣ |H(j\Omega)| H(jΩ) 表示滤波器在频率 Ω \Omega Ω处的增益,而其相位 arg ⁡ ( H ( j Ω ) ) \arg(H(j\Omega)) arg(H(jΩ)) 表示该频率成分的相位移。

  • 这个频率响应可以通过傅里叶变换或拉普拉斯变换的频域分析方法得到,是滤波器设计与分析中的一个关键概念。

用零极点图分析电路

  • 一个零点产生+20db/Dec幅度变化和0到90°相位变化
  • 一个极点产生-20db/Dec幅度变化和0到90°相位变化
  • N个零极点的作用可以互相叠加
Layer 1 + - V i jw σ 零点 极点 C R H(s)= V o V o V i (s) (s) = sC 1 +R R sC 1 - dB w sC 1 w sC 1 90°

CG

  • 注意区分:上边的复频域和电路分析中向量法的复数域。相量特指用复数形式表示的正弦电压和正弦电流。 将几个同频率的正弦量相量用有向线段表示在同一个复平面中的方法称为正弦量的相量图表示法。 其中各正弦量相量的模对应其线段的长度, 辐角对应该线段与正向x轴之间的夹角。

这篇关于电路笔记(PCB):数字滤波电路的拉普拉斯变换与零极点分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1107624

相关文章

Java程序进程起来了但是不打印日志的原因分析

《Java程序进程起来了但是不打印日志的原因分析》:本文主要介绍Java程序进程起来了但是不打印日志的原因分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java程序进程起来了但是不打印日志的原因1、日志配置问题2、日志文件权限问题3、日志文件路径问题4、程序

Java字符串操作技巧之语法、示例与应用场景分析

《Java字符串操作技巧之语法、示例与应用场景分析》在Java算法题和日常开发中,字符串处理是必备的核心技能,本文全面梳理Java中字符串的常用操作语法,结合代码示例、应用场景和避坑指南,可快速掌握字... 目录引言1. 基础操作1.1 创建字符串1.2 获取长度1.3 访问字符2. 字符串处理2.1 子字

Python 迭代器和生成器概念及场景分析

《Python迭代器和生成器概念及场景分析》yield是Python中实现惰性计算和协程的核心工具,结合send()、throw()、close()等方法,能够构建高效、灵活的数据流和控制流模型,这... 目录迭代器的介绍自定义迭代器省略的迭代器生产器的介绍yield的普通用法yield的高级用法yidle

利用Python快速搭建Markdown笔记发布系统

《利用Python快速搭建Markdown笔记发布系统》这篇文章主要为大家详细介绍了使用Python生态的成熟工具,在30分钟内搭建一个支持Markdown渲染、分类标签、全文搜索的私有化知识发布系统... 目录引言:为什么要自建知识博客一、技术选型:极简主义开发栈二、系统架构设计三、核心代码实现(分步解析

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序

kotlin中const 和val的区别及使用场景分析

《kotlin中const和val的区别及使用场景分析》在Kotlin中,const和val都是用来声明常量的,但它们的使用场景和功能有所不同,下面给大家介绍kotlin中const和val的区别,... 目录kotlin中const 和val的区别1. val:2. const:二 代码示例1 Java

C++变换迭代器使用方法小结

《C++变换迭代器使用方法小结》本文主要介绍了C++变换迭代器使用方法小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1、源码2、代码解析代码解析:transform_iterator1. transform_iterat

Go标准库常见错误分析和解决办法

《Go标准库常见错误分析和解决办法》Go语言的标准库为开发者提供了丰富且高效的工具,涵盖了从网络编程到文件操作等各个方面,然而,标准库虽好,使用不当却可能适得其反,正所谓工欲善其事,必先利其器,本文将... 目录1. 使用了错误的time.Duration2. time.After导致的内存泄漏3. jsO

Spring事务中@Transactional注解不生效的原因分析与解决

《Spring事务中@Transactional注解不生效的原因分析与解决》在Spring框架中,@Transactional注解是管理数据库事务的核心方式,本文将深入分析事务自调用的底层原理,解释为... 目录1. 引言2. 事务自调用问题重现2.1 示例代码2.2 问题现象3. 为什么事务自调用会失效3

找不到Anaconda prompt终端的原因分析及解决方案

《找不到Anacondaprompt终端的原因分析及解决方案》因为anaconda还没有初始化,在安装anaconda的过程中,有一行是否要添加anaconda到菜单目录中,由于没有勾选,导致没有菜... 目录问题原因问http://www.chinasem.cn题解决安装了 Anaconda 却找不到 An