电路笔记(PCB):数字滤波电路的拉普拉斯变换与零极点分析

2024-08-26 05:04

本文主要是介绍电路笔记(PCB):数字滤波电路的拉普拉斯变换与零极点分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

拉普拉斯变换基础

拉普拉斯变换

拉普拉斯变换是一种积分变换,用于将一个时间域的函数(通常是信号或系统的响应)转换为一个复频域的函数。这种变换可以简化许多微分方程和线性系统分析的过程。其定义为:
L { f ( t ) } = F ( s ) = ∫ 0 ∞ f ( t ) e − s t d t \mathcal{L}\{f(t)\} = F(s) = \int_{0}^{\infty} f(t) e^{-st} \, dt L{f(t)}=F(s)=0f(t)estdt

其中:

  • f ( t ) f(t) f(t) 是原始时间域函数。

  • F ( s ) F(s) F(s) 是拉普拉斯变换后的复频域函数。

  • s s s 是复数频率变量。

  • 时域中电路元件的基本关系

    • 电阻 R R R:电压 V ( t ) V(t) V(t) 和电流 I ( t ) I(t) I(t) 之间的关系是 V ( t ) = R ⋅ I ( t ) V(t) = R \cdot I(t) V(t)=RI(t)
    • 电感 L L L:电压 V ( t ) V(t) V(t) 和电流 I ( t ) I(t) I(t) 之间的关系是 V ( t ) = L d I ( t ) d t V(t) = L \frac{dI(t)}{dt} V(t)=LdtdI(t)
    • 电容 C C C:电压 V ( t ) V(t) V(t) 和电流 I ( t ) I(t) I(t) 之间的关系是 V ( t ) = 1 C ∫ I ( t ) d t V(t) = \frac{1}{C} \int I(t) \, dt V(t)=C1I(t)dt

拉普拉斯域中电路元件的基本关系

  • 拉普拉斯变换将时间导数转换为 s s s 的乘法,将积分转换为除以 s s s的操作。拉普拉斯变换将时间域中的导数转换为频域中的乘法操作。例如,对于一个函数 f ( t ) f(t) f(t),其一阶导数 f ′ ( t ) f'(t) f(t) 在拉普拉斯变换下变为 s F ( s ) − f ( 0 ) sF(s) - f(0) sF(s)f(0)。同样地,积分 ∫ 0 t f ( τ ) d τ \int_0^t f(\tau) \, d\tau 0tf(τ)dτ 在拉普拉斯变换下变为 1 s F ( s ) \frac{1}{s}F(s) s1F(s)。这样,拉普拉斯变换使得时间导数和积分在频域中变得更容易处理。
  1. 电阻 R R R

    • 在时域中, V ( t ) = R ⋅ I ( t ) V(t) = R \cdot I(t) V(t)=RI(t)
    • 拉普拉斯变换后, V ( s ) = R ⋅ I ( s ) V(s) = R \cdot I(s) V(s)=RI(s)
    • 阻抗定义为 Z ( s ) = V ( s ) I ( s ) = R Z(s) = \frac{V(s)}{I(s)} = R Z(s)=I(s)V(s)=R,这说明电阻的阻抗在拉普拉斯域中是一个常数 R R R
  2. 电感 L L L

    • 在时域中, V ( t ) = L d I ( t ) d t V(t) = L \frac{dI(t)}{dt} V(t)=LdtdI(t)
    • 拉普拉斯变换后, V ( s ) = L ⋅ s ⋅ I ( s ) − L ⋅ I ( 0 ) V(s) = L \cdot s \cdot I(s) - L \cdot I(0) V(s)=LsI(s)LI(0)
    • 如果电感的初始电流 I ( 0 ) = 0 I(0) = 0 I(0)=0,则 V ( s ) = L ⋅ s ⋅ I ( s ) V(s) = L \cdot s \cdot I(s) V(s)=LsI(s)
    • 阻抗定义为 Z ( s ) = V ( s ) I ( s ) = L ⋅ s Z(s) = \frac{V(s)}{I(s)} = L \cdot s Z(s)=I(s)V(s)=Ls
  3. 电容 C C C

    • 在时域中, V ( t ) = 1 C ∫ I ( t ) d t V(t) = \frac{1}{C} \int I(t) \, dt V(t)=C1I(t)dt
    • 拉普拉斯变换后, V ( s ) = 1 C ⋅ I ( s ) s − 1 C ⋅ I ( 0 ) s V(s) = \frac{1}{C} \cdot \frac{I(s)}{s} - \frac{1}{C} \cdot \frac{I(0)}{s} V(s)=C1sI(s)C1sI(0)
    • 如果电容的初始电压 V ( 0 ) = 0 V(0) = 0 V(0)=0,则 V ( s ) = 1 C ⋅ I ( s ) s V(s) = \frac{1}{C} \cdot \frac{I(s)}{s} V(s)=C1sI(s)
    • 阻抗定义为 Z ( s ) = V ( s ) I ( s ) = 1 s ⋅ C Z(s) = \frac{V(s)}{I(s)} = \frac{1}{s \cdot C} Z(s)=I(s)V(s)=sC1
    • 注: i ( t ) = C ∗ d V ( t ) d t i(t)=C*\frac{dV(t)}{dt} i(t)=CdtdV(t),也可得到 I ( s ) = C ∗ s ∗ V ( s ) I(s)=C*s* V(s) I(s)=CsV(s)
    • 注: s = j ω s=j\omega s=时,阻抗

滤波器的数学表示

  • 让我们首先强调拉普拉斯域和相量域中的阻抗概念:
    所有电气工程信号都存在于时域中,其中时间t是自变量。对于正弦信号,可以将时域信号转换为相量域对于不一定是正弦的一般信号,可以将时域信号转换为拉普拉斯域信号

系统传递函数

  • 滤波器的两端分别为输入电压(或电流)和输出电流(或电流),滤波器将一个复数映射到另一个复数。滤波器实际上构建了一个复数的映射关系,所以滤波器可以用一个复变量函数表示。

  • 零点(Zeros):系统的零点是使得系统传递函数的分子为零的复数值。它们决定了系统的频率响应在这些频率上的衰减特性。当 H ( z ) = 0 H(z) = 0 H(z)=0 时,意味着滤波器在频率为 0 时的增益为 0。在分贝(dB)尺度下,增益 Gain (dB) = 20 ⋅ log ⁡ 10 ( 0 ) = − ∞ dB \text{Gain (dB)} = 20 \cdot \log_{10}(0)=-\infty \text{ dB} Gain (dB)=20log10(0)= dB,这表示滤波器在 z z z处完全衰减信号。

  • 极点(Poles):系统的极点是使得系统传递函数的分母为零的复数值。极点影响系统的稳定性和响应速度。

  • 电路的传递函数 H ( s ) H(s) H(s)是输入信号和输出信号之间的关系在s域的表示。传递函数的形式为:

H ( s ) = A ( s ) B ( s ) = a m s m + a m − 1 s m − 1 + ⋯ + a 1 s + 1 b m s n + b m − 1 s n − 1 + ⋯ + b 1 s + 1 H(s) = \frac{A(s)}{B(s)}=\frac{a_ms^m+a_{m-1}s^{m-1}+\dots +a_1s+1 }{b_ms^n+b_{m-1}s^{n-1}+\dots +b_1s+1 } H(s)=B(s)A(s)=bmsn+bm1sn1++b1s+1amsm+am1sm1++a1s+1

  • 其中, A ( s ) A(s) A(s) 是分子多项式(与零点相关), B ( s ) B(s) B(s) 是分母多项式(与极点相关)。因式分解可得到:
    H ( s ) = A ( s ) B ( s ) = K ∗ Π i m ( s − z i ) Π j n ( s − p j ) H(s) = \frac{A(s)}{B(s)}=K*\frac{\Pi_{i}^{m}(s-z_i) }{\Pi_{j}^{n}(s-p_j) } H(s)=B(s)A(s)=KΠjn(spj)Πim(szi)

  • 因为复数乘法能够视为一种操作(长度倍增和角度增加),所以可以得到

∣ H ( s ) ∣ = K ∗ Π i = 1 m ( ∣ s − z i ∣ ) Π n = 1 j ( ∣ s − p j ∣ ) |H(s)| =K*\frac{\Pi_{i=1}^{m}(|s-z_i|) }{\Pi_{n=1}^{j}(|s-p_j|) } H(s)=KΠn=1j(spj)Πi=1m(szi)

∠ H ( s ) = ∑ i = 1 m ∠ ( s − z i ) − ∑ j = 1 n ∠ ( s − p i ) \angle H(s) = \sum _{i=1}^{m} \angle (s-z_i) - \sum _{j=1}^{n} \angle (s-p_i) H(s)=i=1m(szi)j=1n(spi)

  • 注:以上公式中 ∣ s − p j ∣ |s-p_j| spj为两个复数点的二维之间距离, ∠ ( s − p i ) \angle(s-p_i) (spi)为两个复数向量的夹角。

jw与H(jw)

  • 滤波器的 H ( j Ω ) H(j\Omega) H(jΩ) 是滤波器的频率响应,它描述了滤波器对不同频率成分的增益和相位响应。

  • j Ω j\Omega jΩ 表示频率变量,其中 Ω \Omega Ω 是角频率,单位为弧度每秒。

  • H ( j Ω ) H(j\Omega) H(jΩ) 是一个复数函数,其模值 ∣ H ( j Ω ) ∣ |H(j\Omega)| H(jΩ) 表示滤波器在频率 Ω \Omega Ω处的增益,而其相位 arg ⁡ ( H ( j Ω ) ) \arg(H(j\Omega)) arg(H(jΩ)) 表示该频率成分的相位移。

  • 这个频率响应可以通过傅里叶变换或拉普拉斯变换的频域分析方法得到,是滤波器设计与分析中的一个关键概念。

用零极点图分析电路

  • 一个零点产生+20db/Dec幅度变化和0到90°相位变化
  • 一个极点产生-20db/Dec幅度变化和0到90°相位变化
  • N个零极点的作用可以互相叠加
Layer 1 + - V i jw σ 零点 极点 C R H(s)= V o V o V i (s) (s) = sC 1 +R R sC 1 - dB w sC 1 w sC 1 90°

CG

  • 注意区分:上边的复频域和电路分析中向量法的复数域。相量特指用复数形式表示的正弦电压和正弦电流。 将几个同频率的正弦量相量用有向线段表示在同一个复平面中的方法称为正弦量的相量图表示法。 其中各正弦量相量的模对应其线段的长度, 辐角对应该线段与正向x轴之间的夹角。

这篇关于电路笔记(PCB):数字滤波电路的拉普拉斯变换与零极点分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1107624

相关文章

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

MOLE 2.5 分析分子通道和孔隙

软件介绍 生物大分子通道和孔隙在生物学中发挥着重要作用,例如在分子识别和酶底物特异性方面。 我们介绍了一种名为 MOLE 2.5 的高级软件工具,该工具旨在分析分子通道和孔隙。 与其他可用软件工具的基准测试表明,MOLE 2.5 相比更快、更强大、功能更丰富。作为一项新功能,MOLE 2.5 可以估算已识别通道的物理化学性质。 软件下载 https://pan.quark.cn/s/57

衡石分析平台使用手册-单机安装及启动

单机安装及启动​ 本文讲述如何在单机环境下进行 HENGSHI SENSE 安装的操作过程。 在安装前请确认网络环境,如果是隔离环境,无法连接互联网时,请先按照 离线环境安装依赖的指导进行依赖包的安装,然后按照本文的指导继续操作。如果网络环境可以连接互联网,请直接按照本文的指导进行安装。 准备工作​ 请参考安装环境文档准备安装环境。 配置用户与安装目录。 在操作前请检查您是否有 sud

线性因子模型 - 独立分量分析(ICA)篇

序言 线性因子模型是数据分析与机器学习中的一类重要模型,它们通过引入潜变量( latent variables \text{latent variables} latent variables)来更好地表征数据。其中,独立分量分析( ICA \text{ICA} ICA)作为线性因子模型的一种,以其独特的视角和广泛的应用领域而备受关注。 ICA \text{ICA} ICA旨在将观察到的复杂信号

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

数学建模笔记—— 非线性规划

数学建模笔记—— 非线性规划 非线性规划1. 模型原理1.1 非线性规划的标准型1.2 非线性规划求解的Matlab函数 2. 典型例题3. matlab代码求解3.1 例1 一个简单示例3.2 例2 选址问题1. 第一问 线性规划2. 第二问 非线性规划 非线性规划 非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。2

【C++学习笔记 20】C++中的智能指针

智能指针的功能 在上一篇笔记提到了在栈和堆上创建变量的区别,使用new关键字创建变量时,需要搭配delete关键字销毁变量。而智能指针的作用就是调用new分配内存时,不必自己去调用delete,甚至不用调用new。 智能指针实际上就是对原始指针的包装。 unique_ptr 最简单的智能指针,是一种作用域指针,意思是当指针超出该作用域时,会自动调用delete。它名为unique的原因是这个