《概率机器人》里程计运动模型gmapping中代码解析

2024-08-25 06:32

本文主要是介绍《概率机器人》里程计运动模型gmapping中代码解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

里程计运动模型(odometery motion model)用距离测量代替控制。实际经验表明虽然里程计虽然仍存在误差,但通常比速度运动模型更加的精确。相比于速度运动模型运动信息 ut

(x¯t1x¯t)

为了提取相对的距离, ut 被转变为三个步骤的序列:旋转,平移,另一个旋转,
测距模型
上图就是里程计的测距模型,同样这些旋转和平移都是有噪声的。
首先由里程计算 p(xt|ut,xt1) 的算法,算法的输入是机器人的初始位姿 xt1 ,从机器人里程计获得的一对位姿 ut=(x¯t1,x¯t) ,以及一个假定的最终姿态 xt ,输出的数值概率是 p(xt|ut,xt1)

这里写图片描述

算法的2-4行是从里程计的读数获取相对运动参数 (δrot1 δtrans δrot2)T
第5-7行是相同的,就是计算位姿为 xt1 xt 的相对运动参数,
第8-10行是计算误差概率,
第11行返回各自的误差概率P1 ,P2 ,P3相乘得到的组合误差概率,假定不同误差源之间是相互独立的,变量 α1 α4 是指定机器人运动噪声的机器人的特定参数。
基于里程计运动模型的采样算法

这里写图片描述

数学推导:根据上上面的图应该不难推导出算法中的 (δrot1 δtrans δrot2)T ,为了建立运动误差模型,假设旋转和平移的“真”值是测量值减去均值为0 方差为 b2 的独立噪声 ϵb2 得到也就是上述算法中的5-7行,为了计算旋转和平移的真值引入了误差参数 α1 α4 ,所以实际位置 xt ,从 xt1 经过初始旋转 δ^rot1 跟随平移距离 δ^trans 和另一个旋转 δ^rot2 得到

这里写图片描述
这里的时刻t的位姿用 xt1=(x y θ)T
那么根据给定的运动模型采样算法,,对于不同的误差参数也会有不同的概率分布:
这里写图片描述
第一个模型的采样参数是中等的,可以说是正常的,第二个和第三个扥别是比较大的平移和旋转的误差所造成的。

Gmapping中实现里程计运动模型的采样程序如下:

这个函数的输入是机器人的当前位姿pnew和上一时刻的机器人的位姿pold,

OrientedPoint 
MotionModel::drawFromMotion(const OrientedPoint& p, const OrientedPoint& pnew, const OrientedPoint& pold) const{double sxy=0.3*srr;  //srr我理解为两轮子里程计的方差OrientedPoint delta=absoluteDifference(pnew, pold); //具体如下面的介绍OrientedPoint noisypoint(delta);//存储噪声估计noisypoint.x+=sampleGaussian(srr*fabs(delta.x)+str*fabs(delta.theta)+sxy*fabs(delta.y));noisypoint.y+=sampleGaussian(srr*fabs(delta.y)+str*fabs(delta.theta)+sxy*fabs(delta.x));noisypoint.theta+=sampleGaussian(stt*fabs(delta.theta)+srt*sqrt(delta.x*delta.x+delta.y*delta.y));noisypoint.theta=fmod(noisypoint.theta, 2*M_PI);if (noisypoint.theta>M_PI)noisypoint.theta-=2*M_PI;return absoluteSum(p,noisypoint);
}

首先解释一下函数:

OrientedPoint delta=absoluteDifference(pnew,pold);double 

具体的 内容如下

orientedpoint<T,A> absoluteDifference(const orientedpoint<T,A>& p1,const orientedpoint<T,A>& p2){orientedpoint<T,A> delta=p1-p2;delta.theta=atan2(sin(delta.theta), cos(delta.theta));double s=sin(p2.theta), c=cos(p2.theta);return orientedpoint<T,A>(c*delta.x+s*delta.y, -s*delta.x+c*delta.y, delta.theta);
}

就是计算位姿的变化量,这个OrientedPoint delta的计算 结果对应的理论公式的结果就是

(xx)cosθ+(yy)sinθ(xx)sinθ+(yy)cosθΔθ

计算新旧帧的绝对误差.具体就不再深入。
那么对于其中的三行代码是分别给位姿的三个两添加噪声进去,为什么要这样写呢?

noisypoint.x+=sampleGaussian(srr*fabs(delta.x)+str*fabs(delta.theta)+sxy*fabs(delta.y));noisypoint.y+=sampleGaussian(srr*fabs(delta.y)+str*fabs(delta.theta)+sxy*fabs(delta.x));noisypoint.theta+=sampleGaussian(stt*fabs(delta.theta)+srt*sqrt(delta.x*delta.x+delta.y*delta.y));

首先我们对sampleGaussian( b2 )函数已经是有了解了,这个意思就是以均值为0 方差为 b2 的近似的正态分布的采样算法。所以这些括号里的都是计算方差的,为什么参数不同呢?仔细看看就能找到规律了,但是明白之前的一篇博客里是有对srr srt str stt这些高斯模型参数的设置的,分别代表delta的三个变量之间的方差而已。
接下来的程序

noisypoint.theta=fmod(noisypoint.theta, 2*M_PI);if (noisypoint.theta>M_PI)noisypoint.theta-=2*M_PI;

百度一下fmod()函数是对浮点型数据进行取模运算,就是计算
noisypoint.theta/2*M_PI的余数。 因为要把角度差限定在 [π π] 之间。
最后是返回累计的噪声:
absoluteSum(p,noisypoint);
这个函数的实现代码是

template <class T, class A>
orientedpoint<T,A> absoluteSum(const orientedpoint<T,A>& p1,const orientedpoint<T,A>& p2){double s=sin(p1.theta), c=cos(p1.theta);return orientedpoint<T,A>(c*p2.x-s*p2.y,s*p2.x+c*p2.y, p2.theta) + p1;

P1是当前机器人的位姿,前面的c*p2.x-s*p2.y, s*p2.x+c*p2.y, p2.theta是分别在P1的位姿上加上各自的噪声分量。

*这是我个人的理解,可能有一些偏差,或者错误,有错误还请指正,当然不喜勿喷

这篇关于《概率机器人》里程计运动模型gmapping中代码解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1104806

相关文章

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

hdu4865(概率DP)

题意:已知前一天和今天的天气概率,某天的天气概率和叶子的潮湿程度的概率,n天叶子的湿度,求n天最有可能的天气情况。 思路:概率DP,dp[i][j]表示第i天天气为j的概率,状态转移如下:dp[i][j] = max(dp[i][j, dp[i-1][k]*table2[k][j]*table1[j][col] )  代码如下: #include <stdio.h>#include

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}