本文主要是介绍《概率机器人》里程计运动模型gmapping中代码解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
里程计运动模型(odometery motion model)用距离测量代替控制。实际经验表明虽然里程计虽然仍存在误差,但通常比速度运动模型更加的精确。相比于速度运动模型运动信息 ut 由
为了提取相对的距离, ut 被转变为三个步骤的序列:旋转,平移,另一个旋转,
上图就是里程计的测距模型,同样这些旋转和平移都是有噪声的。
首先由里程计算 p(xt|ut,xt−1) 的算法,算法的输入是机器人的初始位姿 xt−1 ,从机器人里程计获得的一对位姿 ut=(x¯t−1,x¯t) ,以及一个假定的最终姿态 xt ,输出的数值概率是 p(xt|ut,xt−1)
算法的2-4行是从里程计的读数获取相对运动参数 (δrot1 δtrans δrot2)T
第5-7行是相同的,就是计算位姿为 xt−1 到 x−t 的相对运动参数,
第8-10行是计算误差概率,
第11行返回各自的误差概率P1 ,P2 ,P3相乘得到的组合误差概率,假定不同误差源之间是相互独立的,变量 α1 α4 是指定机器人运动噪声的机器人的特定参数。
基于里程计运动模型的采样算法
数学推导:根据上上面的图应该不难推导出算法中的 (δrot1 δtrans δrot2)T ,为了建立运动误差模型,假设旋转和平移的“真”值是测量值减去均值为0 方差为 b2 的独立噪声 ϵb2 得到也就是上述算法中的5-7行,为了计算旋转和平移的真值引入了误差参数 α1 α4 ,所以实际位置 xt ,从 xt−1 经过初始旋转 δ^rot1 跟随平移距离 δ^trans 和另一个旋转 δ^rot2 得到
这里的时刻t的位姿用 xt−1=(x y θ)T
那么根据给定的运动模型采样算法,,对于不同的误差参数也会有不同的概率分布:
第一个模型的采样参数是中等的,可以说是正常的,第二个和第三个扥别是比较大的平移和旋转的误差所造成的。
Gmapping中实现里程计运动模型的采样程序如下:
这个函数的输入是机器人的当前位姿pnew和上一时刻的机器人的位姿pold,
OrientedPoint
MotionModel::drawFromMotion(const OrientedPoint& p, const OrientedPoint& pnew, const OrientedPoint& pold) const{double sxy=0.3*srr; //srr我理解为两轮子里程计的方差OrientedPoint delta=absoluteDifference(pnew, pold); //具体如下面的介绍OrientedPoint noisypoint(delta);//存储噪声估计noisypoint.x+=sampleGaussian(srr*fabs(delta.x)+str*fabs(delta.theta)+sxy*fabs(delta.y));noisypoint.y+=sampleGaussian(srr*fabs(delta.y)+str*fabs(delta.theta)+sxy*fabs(delta.x));noisypoint.theta+=sampleGaussian(stt*fabs(delta.theta)+srt*sqrt(delta.x*delta.x+delta.y*delta.y));noisypoint.theta=fmod(noisypoint.theta, 2*M_PI);if (noisypoint.theta>M_PI)noisypoint.theta-=2*M_PI;return absoluteSum(p,noisypoint);
}
首先解释一下函数:
OrientedPoint delta=absoluteDifference(pnew,pold);double
具体的 内容如下
orientedpoint<T,A> absoluteDifference(const orientedpoint<T,A>& p1,const orientedpoint<T,A>& p2){orientedpoint<T,A> delta=p1-p2;delta.theta=atan2(sin(delta.theta), cos(delta.theta));double s=sin(p2.theta), c=cos(p2.theta);return orientedpoint<T,A>(c*delta.x+s*delta.y, -s*delta.x+c*delta.y, delta.theta);
}
就是计算位姿的变化量,这个OrientedPoint delta的计算 结果对应的理论公式的结果就是
计算新旧帧的绝对误差.具体就不再深入。
那么对于其中的三行代码是分别给位姿的三个两添加噪声进去,为什么要这样写呢?
noisypoint.x+=sampleGaussian(srr*fabs(delta.x)+str*fabs(delta.theta)+sxy*fabs(delta.y));noisypoint.y+=sampleGaussian(srr*fabs(delta.y)+str*fabs(delta.theta)+sxy*fabs(delta.x));noisypoint.theta+=sampleGaussian(stt*fabs(delta.theta)+srt*sqrt(delta.x*delta.x+delta.y*delta.y));
首先我们对sampleGaussian( b2 )函数已经是有了解了,这个意思就是以均值为0 方差为 b2 的近似的正态分布的采样算法。所以这些括号里的都是计算方差的,为什么参数不同呢?仔细看看就能找到规律了,但是明白之前的一篇博客里是有对srr srt str stt这些高斯模型参数的设置的,分别代表delta的三个变量之间的方差而已。
接下来的程序
noisypoint.theta=fmod(noisypoint.theta, 2*M_PI);if (noisypoint.theta>M_PI)noisypoint.theta-=2*M_PI;
百度一下fmod()函数是对浮点型数据进行取模运算,就是计算
noisypoint.theta/2*M_PI的余数。 因为要把角度差限定在 [−π π] 之间。
最后是返回累计的噪声:
absoluteSum(p,noisypoint);
这个函数的实现代码是
template <class T, class A>
orientedpoint<T,A> absoluteSum(const orientedpoint<T,A>& p1,const orientedpoint<T,A>& p2){double s=sin(p1.theta), c=cos(p1.theta);return orientedpoint<T,A>(c*p2.x-s*p2.y,s*p2.x+c*p2.y, p2.theta) + p1;
P1是当前机器人的位姿,前面的c*p2.x-s*p2.y, s*p2.x+c*p2.y, p2.theta
是分别在P1的位姿上加上各自的噪声分量。
*这是我个人的理解,可能有一些偏差,或者错误,有错误还请指正,当然不喜勿喷
这篇关于《概率机器人》里程计运动模型gmapping中代码解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!