基于NURBS曲线的数据拟合算法matlab仿真

2024-06-24 06:12

本文主要是介绍基于NURBS曲线的数据拟合算法matlab仿真,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1.程序功能描述

2.测试软件版本以及运行结果展示

3.核心程序

4.本算法原理

4.1NURBS曲线基础

4.2 数据拟合原理

5.完整程序


1.程序功能描述

       基于NURBS曲线的数据拟合算法,非均匀有理B样条(Non-Uniform Rational B-Splines,简称NURBS)曲线是一种强大的数学工具,广泛应用于计算机图形学、CAD/CAM系统、几何建模和数据拟合等领域。NURBS曲线通过控制顶点和权重,能够精确地表示复杂的曲线和曲面形状,特别适合于对真实世界对象的建模和数据点的光滑拟合。

2.测试软件版本以及运行结果展示

MATLAB2022A版本运行

(完整程序运行后无水印)

3.核心程序

......................................................%拟合前路径段数layer2(i).outline(j).qlj_number = length(points); %拟合前最大路径长度for jj = 1:length(points)-1dist1(jj) = sqrt((points(jj,1) - points(jj+1,1))^2 + (points(jj,2) - points(jj+1,2))^2); endlayer2(i).outline(j).qlj_maxlen = max(dist1); %拟合前平均路径长度layer2(i).outline(j).qlj_meanlen= mean(dist1); %拟合前最小路径长度 layer2(i).outline(j).qlj_minlen = min(dist1); %拟合前最大拟合误差layer2(i).outline(j).qlj_error  = 0; %拟合后路径段数layer2(i).outline(j).hlj_number = NUM; %拟合后最大路径长度for jj = 1:length(points2)-1dist2(jj) = sqrt((points2(jj,1) - points2(jj+1,1))^2 + (points2(jj,2) - points2(jj+1,2))^2); endlayer2(i).outline(j).hlj_maxlen = max(dist1); %拟合后平均路径长度layer2(i).outline(j).hlj_meanlen= mean(dist1); %拟合后最小路径长度 layer2(i).outline(j).hlj_minlen = min(dist1); %拟合后最大拟合误差layer2(i).outline(j).hlj_error  = max(miss); endend axis square;end
16_039m

4.本算法原理

       非均匀有理B样条(Non-Uniform Rational B-Splines,简称NURBS)曲线是一种强大的数学工具,广泛应用于计算机图形学、CAD/CAM系统、几何建模和数据拟合等领域。NURBS曲线通过控制顶点和权重,能够精确地表示复杂的曲线和曲面形状,特别适合于对真实世界对象的建模和数据点的光滑拟合。

4.1NURBS曲线基础

       NURBS曲线是一类特殊的有理B样条曲线,它结合了非均匀(控制点具有不同的参数间隔)和有理(控制点带有权重)的特点。NURBS曲线的数学表达式为:

4.2 数据拟合原理

       数据拟合是指通过调整NURBS曲线的控制顶点位置、权重及可能的结点分布,使得曲线尽可能接近一组已知数据点。这一过程可以通过最小化某种误差度量(如均方误差)来实现,具体步骤如下:

1.初始化:确定NURBS曲线的阶数p、控制顶点数n以及结点分布。初始控制顶点可以简单地设置为数据点的某个子集或通过某种插值方法初步获得。

2.误差评估:定义误差函数E来衡量曲线与数据点集的偏差,例如:

其中,m是数据点的数量,Pj​是第j个数据点的位置,uj​是对应数据点在参数空间的参数值。

3.参数优化:通过梯度下降、共轭梯度法、遗传算法等优化技术,调整控制顶点位置、权重及结点分布,以最小化误差函数E。

4.迭代收敛:重复步骤2和3,直到误差函数下降到预设阈值或迭代次数达到上限。

       在拟合过程中,权重wi​的调整尤为关键,因为它不仅影响曲线的形状,还能通过放大或缩小控制顶点的作用来适应数据点的分布。一种策略是根据数据点的密度或拟合误差动态调整权重,使得曲线在数据密集区域更加平滑,在数据稀疏区域保持对数据点的追踪。

5.完整程序

VVV

这篇关于基于NURBS曲线的数据拟合算法matlab仿真的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1089384

相关文章

Java中注解与元数据示例详解

《Java中注解与元数据示例详解》Java注解和元数据是编程中重要的概念,用于描述程序元素的属性和用途,:本文主要介绍Java中注解与元数据的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参... 目录一、引言二、元数据的概念2.1 定义2.2 作用三、Java 注解的基础3.1 注解的定义3.2 内

将sqlserver数据迁移到mysql的详细步骤记录

《将sqlserver数据迁移到mysql的详细步骤记录》:本文主要介绍将SQLServer数据迁移到MySQL的步骤,包括导出数据、转换数据格式和导入数据,通过示例和工具说明,帮助大家顺利完成... 目录前言一、导出SQL Server 数据二、转换数据格式为mysql兼容格式三、导入数据到MySQL数据

C++中使用vector存储并遍历数据的基本步骤

《C++中使用vector存储并遍历数据的基本步骤》C++标准模板库(STL)提供了多种容器类型,包括顺序容器、关联容器、无序关联容器和容器适配器,每种容器都有其特定的用途和特性,:本文主要介绍C... 目录(1)容器及简要描述‌php顺序容器‌‌关联容器‌‌无序关联容器‌(基于哈希表):‌容器适配器‌:(

C#提取PDF表单数据的实现流程

《C#提取PDF表单数据的实现流程》PDF表单是一种常见的数据收集工具,广泛应用于调查问卷、业务合同等场景,凭借出色的跨平台兼容性和标准化特点,PDF表单在各行各业中得到了广泛应用,本文将探讨如何使用... 目录引言使用工具C# 提取多个PDF表单域的数据C# 提取特定PDF表单域的数据引言PDF表单是一

一文详解Python中数据清洗与处理的常用方法

《一文详解Python中数据清洗与处理的常用方法》在数据处理与分析过程中,缺失值、重复值、异常值等问题是常见的挑战,本文总结了多种数据清洗与处理方法,文中的示例代码简洁易懂,有需要的小伙伴可以参考下... 目录缺失值处理重复值处理异常值处理数据类型转换文本清洗数据分组统计数据分箱数据标准化在数据处理与分析过

大数据小内存排序问题如何巧妙解决

《大数据小内存排序问题如何巧妙解决》文章介绍了大数据小内存排序的三种方法:数据库排序、分治法和位图法,数据库排序简单但速度慢,对设备要求高;分治法高效但实现复杂;位图法可读性差,但存储空间受限... 目录三种方法:方法概要数据库排序(http://www.chinasem.cn对数据库设备要求较高)分治法(常

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动