【论文精读】分类扩散模型:重振密度比估计(Revitalizing Density Ratio Estimation)

本文主要是介绍【论文精读】分类扩散模型:重振密度比估计(Revitalizing Density Ratio Estimation),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、文章概览
    • (一)问题的提出
    • (二)文章工作
  • 二、理论背景
    • (一)密度比估计DRE
    • (二)去噪扩散模型
  • 三、方法
    • (一)推导分类和去噪之间的关系
    • (二)组合训练方法
    • (三)一步精确的似然计算
  • 四、实验
    • (一)使用两种损失对于实现最佳分类器的重要性
    • (二)去噪结果、图像质量和负对数似然


论文:Classification Diffusion Models: Revitalizing Density Ratio Estimation

一、文章概览

(一)问题的提出

学习数据分布的重要方法:密度比估计(DRE)

  • 密度比估计训练模型以在数据样本和来自某个参考分布的样本之间进行分类。
  • 优势:基于 DRE 的模型可以直接输出任何给定输入的可能性,这是大多数生成技术所缺乏的非常理想的属性
  • 劣势:DRE 方法一直难以准确捕获图像等复杂高维数据的分布

复杂高维数据的生成建模:去噪扩散模型(DDM)

  • 优势:可以处理复杂高维数据的生成建模问题,应用于解决逆问题、图像编辑和医学数据增强
  • 劣势:评估数据样本的可能性是一项具有挑战性的任务,需要许多神经函数评估(NFE)来计算可能性 - ELBO,或使用 ODE 求解器来近似精确的可能性。

(二)文章工作

提出分类扩散模型(CDM):基于DRE的生成方法

  • 采用去噪扩散模型(DDM)的形式
  • 利用分类器来预测添加到干净信号中的噪声水平
  • 将预测添加到数据样本中的高斯白噪声水平的最佳分类器与清除这种噪声的 MMSE 降噪器之间建立了连接
    • DDMs依赖于最小均方误差(MMSE)去噪
    • DRE方法则依赖于最优分类

二、理论背景

(一)密度比估计DRE

噪声对比估计(NCE)方法:

  • 从最优二元分类器中提取未知分布 p d ( x ) p_d(x) pd(x) 和已知参考分布 p n ( x ) p_n(x) pn(x) 之间的比率,以区分 p d ( x ) p_d(x) pd(x) p n ( x ) p_n( x) pn(x)。一旦从分类器中提取出该比率,就可以将其乘以已知的 p n ( x ) p_n(x) pn(x) 以获得 p d ( x ) p_d(x) pd(x)

  • 具体来说,令 C C C表示样本 x x x的类别,其中 C C C = 1、0分别对应于 x x x 是来自 p d ( x ) p_d(x) pd(x) p n ( x ) p_n(x) pn(x)的样本的事件。从 x x x 预测 C C C 的最佳分类器输出 P ( C = 1 ∣ x ) P(C = 1|x) P(C=1∣x) P ( C = 0 ∣ x ) P(C = 0|x) P(C=0∣x)。使用贝叶斯规则可以计算密度比
    p d ( x ) p n ( x ) = P ( C = 1 ∣ x ) P ( C = 0 ∣ x ) \frac{p_d(x)}{p_n(x)}=\frac{P(C=1|x)}{P(C=0|x)} pn(x)pd(x)=P(C=0∣x)P(C=1∣x)

DRE的密度断层问题:
当目标分布 p d ( x ) p_d(x) pd(x) 和已知参考分布 p n ( x ) p_n(x) pn(x)差异显著时,传统的密度比估计(DRE)方法可能会失败。因为当训练一个分类器来区分图像和噪声时,分类器可以在不学习有关图像的有意义信息的情况下达到高精度。一旦分类器达到这一点,其权重实际上会停止更新。

TRE方法:
使用一系列列逐渐接近的分布 p x 0 ( x ) , p x 1 ( x ) , . . . , p x m ( x ) p_{x0}(x),p_{x1}(x),...,p_{xm}(x) px0(x),px1(x),...,pxm(x),其中 p x m ( x ) p_{xm}(x) pxm(x)是参考分布,而 p x 0 ( x ) p_{x0}(x) px0(x)是目标分布。中间的分布 { p x i ( x ) } i = 1 m − 1 \{p_{xi}(x)\}_{i=1}^{m-1} {pxi(x)}i=1m1不需要事先知道具体形式,只要能够从中采样即可。

  • 定义 p x i ( x ) p_{xi}(x) pxi(x) x i = α ˉ i x 0 + 1 − α ˉ i x m x_i=\sqrt{\bar{\alpha}_i}x_0+\sqrt{1-\bar{\alpha}_i}x_m xi=αˉi x0+1αˉi xm,其中 x 0 ∼ p x 0 , x m ∼ p x m x_0\sim p_{x0},x_m\sim p_{xm} x0px0,xmpxm α ˉ i \bar{\alpha}_i αˉi是一个从1逐渐减少到0的序列;
  • 利用密度比估计的原理,可以通过训练二元分类器来区分来自 p x i ( x ) p_{xi}(x) pxi(x) p x i + 1 ( x ) p_{xi+1}(x) pxi+1(x)的样本,提取每对相邻分布 p x i ( x ) / p x i + 1 ( x ) p_{xi}(x)/p_{xi+1}(x) pxi(x)/pxi+1(x)的比值;
  • 计算出目标分布和参考分布之间的比值:
    p x 0 ( x ) p x m ( x ) = p x 0 ( x ) p x 1 ( x ) ⋅ p x 1 ( x ) p x 2 ( x ) ⋅ . . . ⋅ p x m − 2 ( x ) p x m − 1 ( x ) ⋅ p x m − 1 ( x ) p x m ( x ) \frac{p_{x0}(x)}{p_{xm}(x)}=\frac{p_{x0}(x)}{p_{x1}(x)}\cdot \frac{p_{x1}(x)}{p_{x2}(x)}\cdot ... \cdot \frac{p_{xm-2}(x)}{p_{xm-1}(x)}\cdot \frac{p_{xm-1}(x)}{p_{xm}(x)} pxm(x)px0(x)=px1(x)px0(x)px2(x)px1(x)...pxm1(x)pxm2(x)pxm(x)pxm1(x)

优点:通过这种方法,TRE方法通过增加分类任务的复杂度,使得DRE方法能够有效地估计复杂的目标分布 ,而不会受到传统方法中密度断层问题的限制。

缺点:TRE方法中的每个比值 p x i ( x ) p x i + 1 ( x ) \frac{p_{xi}(x)}{p_{xi+1}(x)} pxi+1(x)pxi(x)都是从仅在分布 p x i p_{xi} pxi p x i + 1 p_{xi+1} pxi+1上训练的二元分类器中提取出来的,也就是说不同比值是从不同分布上得到的,这可能导致训练和推断时出现不匹配,因为在推断时,所有的比值都是在相同的输入x上评估的。

在这里插入图片描述

(二)去噪扩散模型

【论文精读】DDPM:Denoising Diffusion Probabilistic Models 去噪扩散概率模型

DDM作为一个最小均方误差(MMSE)去噪器,其行为受噪声水平条件影响;而CDM则作为一个分类器。对于给定的噪声图像,CDM输出一个概率向量,预测噪声水平。这个概率向量中的第 t t t 个元素表示输入图像的噪声水平对应于扩散过程中的第 t t t 个时间步的概率。CDM可以用来输出MMSE去噪后的图像,方法是根据我们在定理3.1中展示的内容,计算其输出概率向量关于输入图像的梯度。

换句话说,CDM通过输出的概率向量,可以反向推导出输入图像在不同噪声水平下的最小均方误差去噪结果。
在这里插入图片描述

三、方法

(一)推导分类和去噪之间的关系

我们首先推导出分类和去噪之间的关系,然后将其用作我们的 CDM 方法的基础。

随机向量 x t x_t xt包含了时间步 t ∈ { 1 , . . . , T } t\in \{1,...,T\} t{1,...,T},并设置0和 T + 1 T+1 T+1两个额外的时间步,分别对应干净图像和纯高斯噪声。具体地,定义 α ˉ 0 = 1 \bar{\alpha}_0=1 αˉ0=1 α ˉ T + 1 = 0 \bar{\alpha}_{T+1}=0 αˉT+1=0 。每个时刻 t t t随机向量 x t x_t xt的密度为 p x t ( x ) p_{x_t}(x) pxt(x)

分类器的输出:
文章方法的核心是训练一个分类器,接受一个噪声样本 x t x_t xt,并预测其所在的时刻 t t t。形式上,假设 t t t是一个取值在 { 0 , , 1 , . . . , T , T + 1 } \{0,,1,...,T,T+1\} {0,,1,...,T,T+1}的离散随机变量,概率质量函数为 p t ( t ) = P ( t = t ) p_t(t)=P(t=t) pt(t)=P(t=t),并且随机向量 x ~ \tilde{x} x~是在随机时刻 t t t的扩散信号,即 x ~ = x t \tilde{x}=x_t x~=xt。注意到每个 x t x_t xt的密度可以写成 p x t ( x ) = p x ~ ∣ t ( x ∣ t ) p_{x_t}(x)=p_{\tilde{x}|t}(x|t) pxt(x)=px~t(xt),根据全概率公式, x ~ \tilde{x} x~的密度为:
p x ~ ( x ) = ∑ t = 1 T + 1 p x t ( x ) p t ( t ) p_{\tilde{x}}(x)=\sum_{t=1}^{T+1}p_{x_t}(x)p_t(t) px~(x)=t=1T+1pxt(x)pt(t)

给定从 p x ~ ( x ) p_{\tilde{x}}(x) px~(x)抽样的样本 x x x,我们感兴趣的是一个分类器,输出概率向量 ( p t ∣ x ~ ( 0 ∣ x ) , p t ∣ x ~ ( 1 ∣ x ) . . . , p t ∣ x ~ ( T + 1 ∣ x ) ) (p_{t|\tilde{x}}(0|x),p_{t|\tilde{x}}(1|x)...,p_{t|\tilde{x}}(T+1|x)) (ptx~(0∣x),ptx~(1∣x)...,ptx~(T+1∣x)),其中 p t ∣ x ~ ( t ∣ x ) = P ( t = t ∣ x ~ = x ) p_{t|\tilde{x}}(t|x)=P(t=t|\tilde{x}=x) ptx~(tx)=P(t=tx~=x)

分类器的梯度就是DDM中的去噪器:
假设我们有一个去噪器,其作用是去除样本中的噪声,这个去噪器可以看作是对分类器输出的概率向量的梯度操作。通过这个梯度操作,我们可以得到每个时间步对应的去噪后的结果。公式表达为:

F ( x , t ) = log ⁡ ( p t ∣ x ~ ( T + 1 ∣ x ) ) − log ⁡ ( p t ∣ x ~ ( t ∣ x ) ) F(x,t)=\log(p_{t|\tilde{x}}(T+1|x))-\log(p_{t|\tilde{x}}(t|x)) F(x,t)=log(ptx~(T+1∣x))log(ptx~(tx)),则有:
E ( ϵ t ∣ x t = x t ) = 1 − α ˉ t ( ∇ x t F ( x t , t ) + x t ) E(\epsilon_t|x_t=x_t)=\sqrt{1-\bar{\alpha}_t}(\nabla_{x_t}F(x_t,t)+x_t) E(ϵtxt=xt)=1αˉt (xtF(xt,t)+xt)

使用标准交叉熵(CE)损失简单地训练这样的分类器会导致糟糕的结果:
因此,我们可以训练一个分类器,并根据上述公式使用其梯度作为降噪器,然后应用任何所需的采样方法(例如DDPM、DDIM等)。然而,使用标准交叉熵(CE)损失简单地训练这样的分类器会导致糟糕的结果。这是因为即使没有学习到任何时间步 t t t下正确的概率 p t ∣ x ~ ( t ∣ x ) p_{t|\tilde{x}}(t|x) ptx~(tx),分类器也可能达到较低的 CE 损失。 这种现象可以在下图中观察到,它说明了迄今为止 DRE 方法未能捕获图像等高维复杂数据的分布的原因。
在这里插入图片描述

(二)组合训练方法

为了获得任何时间步 t t t下正确的概率 p t ∣ x ~ ( t ∣ x ) p_{t|\tilde{x}}(t|x) ptx~(tx),我们建议使用一种结合了分类器输出的交叉熵损失和其梯度的均方误差的训练方法。完整训练算法如算法1所示:
在这里插入图片描述
算法 2 展示了如何使用 DDPM 采样器通过 CDM 生成样本,而类似的方法也可用于其他采样器。使用 CDM 的 DDPM 采样中的每个步骤 t 由下式给出:
x t − 1 = α t x t − 1 − α t α t ∇ x t F θ ( x t , t ) + σ t z x_{t-1}=\sqrt{\alpha_t}x_t-\frac{1-\alpha_t}{\sqrt{\alpha_t}}\nabla_{x_t}F_\theta(x_t,t)+\sigma_tz xt1=αt xtαt 1αtxtFθ(xt,t)+σtz

(三)一步精确的似然计算

为了计算给定样本的似然,DDM 需要多次评估神经网络来使用诸如证据下界(ELBO)或者基于ODE求解器来近似对数似然的方法,作为基于DRE的方法,Classifier-Defined Models(CDMs)具有显著优势。CDMs可以在单次神经网络评估(NFE)中计算精确的似然性。具体地,对于任意所需的时间步长t,CDMs可以计算与噪声图像分布 p x t p_{xt} pxt相关的精确似然性。

对于任意 t ∈ { 0 , 1 , . . , T + 1 } t\in \{0,1,..,T+1\} t{0,1,..,T+1},有:
p x t ( x ) = p t ( T + 1 ) p t ( t ) p t ∣ x ~ ( t ∣ x ) p t ∣ x ~ ( T + 1 ∣ x ) N ( x ; 0 , I ) p_{x_t}(x)=\frac{p_t(T+1)}{p_t(t)}\frac{p_{t|\tilde{x}}(t|x)}{p_{t|\tilde{x}}(T+1|x)}\mathcal{N}(x;0,\mathcal{I}) pxt(x)=pt(t)pt(T+1)ptx~(T+1∣x)ptx~(tx)N(x;0,I)

  • 第一项仅取决于预先选择的概率质量函数 p t p_t pt(在我们的实验中选择为均匀分布)
  • 第二项可以从分类器输出向量的第 t t t T + 1 T+1 T+1 个条目中获得。这意味着我们可以计算任何给定图像 x x x相对于任意噪声水平 t t t 下的噪声图像密度 p x t p_{xt} pxt 的似然性。

四、实验

(一)使用两种损失对于实现最佳分类器的重要性

使用不同损失训练的模型达到的MSE、CE和分类准确率:从表格 1 可以明显看出,仅使用CE损失时,MSE很高;而仅使用MSE损失时,CE和分类准确率则很差。一个重要的观察点是,即使在使用CE损失训练时,分类器的准确率也很低。这是使得DRE方法有效的关键前提。具体来说,为了避免密度差问题,分类问题应该足够困难,否则分类器甚至可以在没有学习到正确密度比率的情况下轻松区分类别。
在这里插入图片描述

(二)去噪结果、图像质量和负对数似然

对于图像去噪,CDM 在 MSE 方面超过了高噪声水平下预训练的 DDM,同时在较低噪声水平下实现了可比较的 MSE,如图 4 所示。这些定量结果得到了图 5 中的定性示例的证实,它展示了不同噪声水平下的图像去噪结果。
在这里插入图片描述

这篇关于【论文精读】分类扩散模型:重振密度比估计(Revitalizing Density Ratio Estimation)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1089288

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言