直线一级倒立摆微分建模

2024-06-24 04:08

本文主要是介绍直线一级倒立摆微分建模,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

      建模内容如下:        

https://mp.weixin.qq.com/s?__biz=Mzg5OTIyNDEzMg==&mid=2247483673&idx=1&sn=c4e8024ebffd87611b757f7fd570f3c4&chksm=c057c632f7204f2442d0aab652847e342447fa604f04d74faafb798f022fb30edbcf781b4323&token=46101397&lang=zh_CN#rd

       欢迎和大家一起交流。为了获得老师的赞赏而寻求的答案,那么老实的高度就限制了你们的视野;为了寻求诗人的认同而去寻求答案,那么世人就会在你们身边围起一道道高墙。寻求答案,能重复先辈上一次的正确,但是,永远无法走出一条新路。----《天行九歌》71集。

 

这篇关于直线一级倒立摆微分建模的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1089133

相关文章

基于UE5和ROS2的激光雷达+深度RGBD相机小车的仿真指南(五):Blender锥桶建模

前言 本系列教程旨在使用UE5配置一个具备激光雷达+深度摄像机的仿真小车,并使用通过跨平台的方式进行ROS2和UE5仿真的通讯,达到小车自主导航的目的。本教程默认有ROS2导航及其gazebo仿真相关方面基础,Nav2相关的学习教程可以参考本人的其他博客Nav2代价地图实现和原理–Nav2源码解读之CostMap2D(上)-CSDN博客往期教程: 第一期:基于UE5和ROS2的激光雷达+深度RG

POJ1269 判断2条直线的位置关系

题目大意:给两个点能够确定一条直线,题目给出两条直线(由4个点确定),要求判断出这两条直线的关系:平行,同线,相交。如果相交还要求出交点坐标。 解题思路: 先判断两条直线p1p2, q1q2是否共线, 如果不是,再判断 直线 是否平行, 如果还不是, 则两直线相交。  判断共线:  p1p2q1 共线 且 p1p2q2 共线 ,共线用叉乘为 0  来判断,  判断 平行:  p1p

数学建模笔记—— 非线性规划

数学建模笔记—— 非线性规划 非线性规划1. 模型原理1.1 非线性规划的标准型1.2 非线性规划求解的Matlab函数 2. 典型例题3. matlab代码求解3.1 例1 一个简单示例3.2 例2 选址问题1. 第一问 线性规划2. 第二问 非线性规划 非线性规划 非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。2

OCC开发_变高箱梁全桥建模

概述     上一篇文章《OCC开发_箱梁梁体建模》中详细介绍了箱梁梁体建模的过程。但是,对于实际桥梁,截面可能存在高度、腹板厚度、顶底板厚度变化,全桥的结构中心线存在平曲线和竖曲线。针对实际情况,通过一个截面拉伸来实现全桥建模显然不可能。因此,针对变高箱梁,本文新的思路来实现全桥建模。 思路 上一篇文章通过一个截面拉伸生成几何体的方式行不通,我们可以通过不同面来形成棱柱的方式实现。具体步骤

一些数学经验总结——关于将原一元二次函数增加一些限制条件后最优结果的对比(主要针对公平关切相关的建模)

1.没有分段的情况 原函数为一元二次凹函数(开口向下),如下: 因为要使得其存在正解,必须满足,那么。 上述函数的最优结果为:,。 对应的mathematica代码如下: Clear["Global`*"]f0[x_, a_, b_, c_, d_] := (a*x - b)*(d - c*x);(*(b c+a d)/(2 a c)*)Maximize[{f0[x, a, b,

2024年高教社杯数学建模国赛最后一步——结果检验-事关最终奖项

2024年国赛已经来到了最后一天,有必要去给大家讲解一下,我们不需要过多的去关注模型的结果,因为模型的结果的分值设定项最多不到20分。但是如果大家真的非常关注的话,那有必要给大家讲解一下论文结果相关的问题。很多的论文,上至国赛优秀论文下至不获奖的论文并不是所有的论文都可以进行完整的复现求解,大部分数模论文都为存在一个灰色地带。         白色地带即认为所有的代码均可运行、公开

求空间直线与平面的交点

若直线不与平面平行,将存在交点。如下图所示,已知直线L过点m(m1,m2,m3),且方向向量为VL(v1,v2,v3),平面P过点n(n1,n2,n3),且法线方向向量为VP(vp1,vp2,vp3),求得直线与平面的交点O的坐标(x,y,z): 将直线方程写成参数方程形式,即有: x = m1+ v1 * t y = m2+ v2 * t

数据集 3DPW-开源户外三维人体建模-姿态估计-人体关键点-人体mesh建模 >> DataBall

3DPW 3DPW-开源户外三维人体建模数据集-姿态估计-人体关键点-人体mesh建模 开源户外三维人体数据集 @inproceedings{vonMarcard2018, title = {Recovering Accurate 3D Human Pose in The Wild Using IMUs and a Moving Camera}, author = {von Marc

Rhinoceros 8 for Mac/Win:重塑三维建模边界的革新之作

Rhinoceros 8(简称Rhino 8),作为一款由Robert McNeel & Assoc公司开发的顶尖三维建模软件,无论是对于Mac还是Windows用户而言,都是一款不可多得的高效工具。Rhino 8以其强大的功能、广泛的应用领域以及卓越的性能,在建筑设计、工业设计、产品设计、三维动画制作、科学研究及机械设计等多个领域展现出了非凡的实力。 强大的建模能力 Rhino 8支持多种建

2024 年高教社杯全国大学生数学建模竞赛题目——2024 年高教社杯全国大学生数学建模竞赛题目的求解

2024 年高教社杯全国大学生数学建模竞赛题目 (请先阅读“ 全国大学生数学建模竞赛论文格式规范 ”) 2024 年高教社杯全国大学生数学建模竞赛题目 随着城市化进程的加快、机动车的快速普及, 以及人们活动范围的不断扩大,城市道 路交通拥堵问题日渐严重,即使在一些非中心城市,道路交通拥堵问题也成为影响地方经 济发展和百姓幸福感的一个“痛点”,是相关部门的棘手难题之一。 考虑一个拥有知名景区