一些数学经验总结——关于将原一元二次函数增加一些限制条件后最优结果的对比(主要针对公平关切相关的建模)

本文主要是介绍一些数学经验总结——关于将原一元二次函数增加一些限制条件后最优结果的对比(主要针对公平关切相关的建模),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.没有分段的情况

原函数为一元二次凹函数(开口向下),如下:

f_0(x)=(ax-b)(d-cx), where\ a>0,b>0,c>0, d>0, and\ \frac{b}{a} < \frac{d}{c}.

因为要使得其存在正解,必须满足\frac{b}{a} < x < \frac{d}{c},那么\frac{b}{a} < \frac{d}{c}

上述函数的最优结果为:x^*=\frac{a d+b c}{2 a c}f(x^*)=\frac{a^2 d^2-2 a b c d+b^2 c^2}{4 a c}

对应的mathematica代码如下:

Clear["Global`*"]
f0[x_, a_, b_, c_, d_] := (a*x - b)*(d - c*x);(*(b c+a d)/(2 a c)*)
Maximize[{f0[x, a, b, c, d], a > 0 && b > 0 && c > 0 && d > 0}, x]

对应的mathematica结果如下:

2. 两个分段的情况

其中,

(1)第一个分段的函数为原函数;

(2)第二分段的函数为原函数的变体,即:
(i)第一因式与原函数的第一因式一样,即都为ax-b;

(ii)第二因式在原函数的第二因式基础上减去一部分(即ex-f),即为(d-cx)-(ex-f)

(3)其中分段点为减去部分为零时候的x值(即ex-f=0\Rightarrow x=\frac{f}{e}

\begin{array}{l} F(x) = \left\{ {\begin{array}{*{20}{c}} {​{f_0}(x)}&{x \le \frac{​{​{f_1}}}{​{​{e_1}}}}\\ {​{f_{1}}(x)}&{x > \frac{​{​{f_1}}}{​{​{e_1}}}} \end{array}} \right. = \left\{ {\begin{array}{*{20}{c}} {(ax - b)(d - cx)}&{x \le \frac{​{​{f_1}}}{​{​{e_1}}}}\\ {(ax - b)[(d - cx) - ({e_1}x - {f_1})]}&{x > \frac{​{​{f_1}}}{​{​{e_1}}}} \end{array}} \right.\\ = \left\{ {\begin{array}{*{20}{c}} {(ax - b)(d - cx)}&{x \le \frac{​{​{f_1}}}{​{​{e_1}}}}\\ {(ax - b)[(d + {f_1}) - (c + {e_1})x]}&{x > \frac{​{​{f_1}}}{​{​{e_1}}}.} \end{array}} \right. \end{array}

where\ a>0,b>0,c>0, d>0, \frac{b}{a} < \frac{d}{c}, e_1>0, f_1>0, and\ \frac{b}{a} < \frac{​{d + {f_1}}}{​{c + {e_1}}}.

针对第一分段f_0(x),在无限制条件情况下,最优结果为:x^*=\frac{a d+b c}{2 a c}f_0(x^*)=\frac{a^2 d^2-2 a b c d+b^2 c^2}{4 a c}

针对第二分段f_1(x),在无限制条件情况下,最优结果为:{x^*} = \frac{​{(ad + bc) + (a{f_1} + b{e_1})}}{​{2(ac + a{e_1})}}f_1(x^*)={\frac{​{​{​{(b(c + e_1) - a(d + f_1))}^2}}}{​{4a(c + e_1)}}}

外生参数的大小关系(可以利用mathematica验证):

(1)成立的一些:

(i)\frac{b}{a}<\frac{a d+b c}{2 a c}<\frac{d}{c}

(ii)\frac{b}{a} < \frac{​{\left( {bc + ad} \right) + \left( {b{e_1} + af_1} \right)}}{​{2\left( {ac + a{e_1}} \right)}} < \frac{​{d + {f_1}}}{​{c + {e_1}}}

(2)不成立的一些:

(i)\frac{​{ad + bc}}{​{2ac}} < \frac{​{​{f_1}}}{​{​{e_1}}} < \frac{​{(ad + bc) + (a{f_1} + b{e_1})}}{​{2(ac + a{e_1})}}

(ii)\frac{​{​{f_1}}}{​{​{e_1}}} < \frac{​{ad + bc}}{​{2ac}} < \frac{​{(ad + bc) + (a{f_1} + b{e_1})}}{​{2(ac + a{e_1})}}

mathematica的代码如下:

Clear["Global`*"]
f0[x_, a_, b_, c_, d_] := (a*x - b)*(d - c*x);(*(b c+a d)/(2 a c)*)
f1[x_, a_, b_, c_, d_, e1_, f1_] := (a*x - b)*((d - c*x) - (e1*x - f1));(*((b c+a d)+(b e+a f))/(2 (a c+a e) )*)
(*f1[x_,a_,b_,c_,d_,e1_,f1_]:=(a*x-b)*((d+f1)-(c+e1)*x);*)Fx[x_, a_, b_, c_, d_, e1_, f1_] := Piecewise[{{f0[x, a, b, c, d], x <= f1/e1}, {f1[x, a, b, c, d, e1, f1], x > f1/e1}}];Reduce[a > 0 && b > 0 && c > 0 && d > 0 && e1 > 0 && f1 > 0 && b/a < d/c && b/a < (d + f1)/(c + e1)]Reduce[a > 0 && b > 0 && c > 0 && d > 0 && e1 > 0 && f1 > 0 && b/a < d/c && b/a < (d + f1)/(c + e1) && b/a < (b c + a d)/(2 a c) < d/c]
Reduce[a > 0 && b > 0 && c > 0 && d > 0 && e1 > 0 && f1 > 0 && b/a < d/c && b/a < (d + f1)/(c + e1) && b/a < ((b c + a d) + (b e1 + a f1))/(2 (a c + a e1) ) < (d + f1)/(c + e1)]
Reduce[a > 0 && b > 0 && c > 0 && d > 0 && e1 > 0 && f1 > 0 && b/a < d/c && b/a < (d + f1)/(c + e1) && (b c + a d)/(2 a c) < f1/e1 < ((b c + a d) + (b e1 + a f1))/(2 (a c + a e1) )]
Reduce[a > 0 && b > 0 && c > 0 && d > 0 && e1 > 0 && f1 > 0 && b/a < d/c && b/a < (d + f1)/(c + e1) && f1/e1 < (b c + a d)/(2 a c) < ((b c + a d) + (b e1 + a f1))/(2 (a c + a e1) )](*Reduce[a>0&&b>0&&c>0&&d>0&&e1>0&&f1>0&&b/a<d/c&&b/a<(d+f1)/(c+e1)&&(\
b c+a d)/(2 a c)>f1/e1&&f1/e1<((b c+a d)+(b e1+a f1))/(2 (a c+a e1) \
)&&f1[((b c+a d)+(b e1+a f1))/(2 (a c+a e1) ),a,b,c,d,e1,f1]>f0[(b \
c+a d)/(2 a c),a,b,c,d]]*)

比较重要的结论

(1)当\frac{​{ad + bc}}{​{2ac}} \le \frac{​{​{f_1}}}{​{​{e_1}}},那么最优的结果为${x^*} = \frac{​{ad + bc}}{​{2ac}}$

(2)当\frac{​{ad + bc}}{​{2ac}} > \frac{​{​{f_1}}}{​{​{e_1}}}

(2.1)当\frac{​{(ad + bc) + (a{f_1} + b{e_1})}}{​{2(ac + a{e_1})}} \le \frac{​{​{f_1}}}{​{​{e_1}}},那么最优的结果为{x^*} = \frac{​{​{f_1}}}{​{​{e_1}}},注意{f_0}(\frac{​{ad + bc}}{​{2ac}}) > {f_0}(\frac{​{​{f_1}}}{​{​{e_1}}})

(2.2)当\frac{​{(ad + bc) + (a{f_1} + b{e_1})}}{​{2(ac + a{e_1})}} > \frac{​{​{f_1}}}{​{​{e_1}}},那么最优的结果为{x^*} = \frac{​{(ad + bc) + (a{f_1} + b{e_1})}}{​{2(ac + a{e_1})}},注意{f_0}(\frac{​{ad + bc}}{​{2ac}}) > {f_1}(\frac{​{(ad + bc) + (a{f_1} + b{e_1})}}{​{2(ac + a{e_1})}})(可以利用mathematica验证)。

那么,总而言之,我们可以得出F(x)\leq f_0(x),当且仅当${x^*} = \frac{​{ad + bc}}{​{2ac}}$时,等号取到,即F(x)= f_0(x)

mathematica的代码如下:

Clear["Global`*"]
f0[x_, a_, b_, c_, d_] := (a*x - b)*(d - c*x);(*(b c+a d)/(2 a c)*)
f1[x_, a_, b_, c_, d_, e1_, f1_] := (a*x - b)*((d - c*x) - (e1*x - f1));(*((b c+a d)+(b e+a f))/(2 (a c+a e) )*)
(*f1[x_,a_,b_,c_,d_,e1_,f1_]:=(a*x-b)*((d+f1)-(c+e1)*x);*)Fx[x_, a_, b_, c_, d_, e1_, f1_] := Piecewise[{{f0[x, a, b, c, d], x <= f1/e1}, {f1[x, a, b, c, d, e1, f1], x > f1/e1}}];(*Reduce[a>0&&b>0&&c>0&&d>0&&e1>0&&f1>0&&b/a<d/c&&b/a<(d+f1)/(c+e1)]Reduce[a>0&&b>0&&c>0&&d>0&&e1>0&&f1>0&&b/a<d/c&&b/a<(d+f1)/(c+e1)&&b/\
a<(b c+a d)/(2 a c)<d/c]
Reduce[a>0&&b>0&&c>0&&d>0&&e1>0&&f1>0&&b/a<d/c&&b/a<(d+f1)/(c+e1)&&b/\
a<((b c+a d)+(b e1+a f1))/(2 (a c+a e1) )<(d+f1)/(c+e1)]
Reduce[a>0&&b>0&&c>0&&d>0&&e1>0&&f1>0&&b/a<d/c&&b/a<(d+f1)/(c+e1)&&(b \
c+a d)/(2 a c)<f1/e1<((b c+a d)+(b e1+a f1))/(2 (a c+a e1) )]
Reduce[a>0&&b>0&&c>0&&d>0&&e1>0&&f1>0&&b/a<d/c&&b/a<(d+f1)/(c+e1)&&f1/\
e1<(b c+a d)/(2 a c)<((b c+a d)+(b e1+a f1))/(2 (a c+a e1) )]*)Reduce[a > 0 && b > 0 && c > 0 && d > 0 && e1 > 0 && f1 > 0 && b/a < d/c && b/a < (d + f1)/(c + e1) && (b c + a d)/(2 a c) > f1/e1 && f1/e1 < ((b c + a d) + (b e1 + a f1))/(2 (a c + a e1) ) && f1[((b c + a d) + (b e1 + a f1))/(2 (a c + a e1) ), a, b, c, d, e1, f1] > f0[(b c + a d)/(2 a c), a, b, c, d]]

3. 三个分段的情况

其中,

(1)第一个分段的函数为原函数;

(2)第二分段的函数为原函数的变体,即:
(i)第一因式与原函数的第一因式一样,即都为ax-b;

(ii)第二因式在原函数的第二因式基础上减去一部分(即ex-f),即为(d-cx)-(e_1x-f_1)

(3)其中第二分段点为减去部分为零时候的x值(即e_1x-f_1=0\Rightarrow x=\frac{f_1}{e_1}

(4)第三分段的函数为原函数的变体,即:
(i)第一因式与原函数的第一因式一样,即都为ax-b;

(ii)第二因式在原函数的第二因式基础上减去一部分(即e_2x - f_2),即为(d-cx)-(e_2x-f_2)

(5)其中第三分段点为减去部分为零时候的x值(即e_2x-f_2=0\Rightarrow x=\frac{f_2}{e_2}

\begin{array}{l} G(x) = \left\{ {\begin{array}{*{20}{c}} {​{f_0}(x)}&{x \le \frac{​{​{f_1}}}{​{​{e_1}}}}\\ {​{f_1}(x)}&{\frac{​{​{f_1}}}{​{​{e_1}}} < x \le \frac{​{​{f_2}}}{​{​{e_2}}}}\\ {​{f_2}(x)}&{x > \frac{​{​{f_2}}}{​{​{e_2}}}} \end{array}} \right. = \left\{ {\begin{array}{*{20}{c}} {(ax - b)(d - cx)}&{x \le \frac{​{​{f_1}}}{​{​{e_1}}}}\\ {(ax - b)[(d - cx) - ({e_1}x - {f_1})]}&{\frac{​{​{f_1}}}{​{​{e_1}}} < x \le \frac{​{​{f_2}}}{​{​{e_2}}}}\\ {(ax - b)[(d - cx) - ({e_2}x - {f_2})]}&{x > \frac{​{​{f_2}}}{​{​{e_2}}}} \end{array}} \right.\\ = \left\{ {\begin{array}{*{20}{c}} {(ax - b)(d - cx)}&{x \le \frac{​{​{f_1}}}{​{​{e_1}}}}\\ {(ax - b)[(d + {f_1}) - (c + {e_1})x]}&{\frac{​{​{f_1}}}{​{​{e_1}}} < x \le \frac{​{​{f_2}}}{​{​{e_2}}}}\\ {(ax - b)[(d + {f_2}) - (c + {e_2})x]}&{x > \frac{​{​{f_2}}}{​{​{e_2}}}.} \end{array}} \right. \end{array}

where\ a>0,b>0,c>0, d>0, \frac{b}{a} < \frac{d}{c}, e_1>0, f_1>0, \frac{b}{a} < \frac{​{d + {f_1}}}{​{c + {e_1}}}, e_2>0, f_2>0, \frac{b}{a} < \frac{​{d + {f_2}}}{​{c + {e_2}}}, and\ \frac{​{​{f_1}}}{​{​{e_1}}} < \frac{​{​{f_2}}}{​{​{e_2}}}.

针对第一分段f_0(x),在无限制条件情况下,最优结果为:x^*=\frac{a d+b c}{2 a c}f_0(x^*)=\frac{a^2 d^2-2 a b c d+b^2 c^2}{4 a c}

针对第二分段f_1(x),在无限制条件情况下,最优结果为:{x^*} = \frac{​{(ad + bc) + (a{f_1} + b{e_1})}}{​{2(ac + a{e_1})}}f_1(x^*)={\frac{​{​{​{(b(c + e_1) - a(d + f_1))}^2}}}{​{4a(c + e_1)}}}

针对第三分段f_2(x),在无限制条件情况下,最优结果为:{x^*} = \frac{​{(ad + bc) + (a{f_2} + b{e_2})}}{​{2(ac + a{e_2})}}f_2(x^*)={\frac{​{​{​{(b(c + e_2) - a(d + f_2))}^2}}}{​{4a(c + e_2)}}}

外生参数的大小关系(可以利用mathematica验证):

(1)成立的一些:

(i)\frac{b}{a}<\frac{a d+b c}{2 a c}<\frac{d}{c}

(ii)\frac{b}{a} < \frac{​{\left( {bc + ad} \right) + \left( {b{e_1} + af_1} \right)}}{​{2\left( {ac + a{e_1}} \right)}} < \frac{​{d + {f_1}}}{​{c + {e_1}}}

(iii)\frac{b}{a} < \frac{​{\left( {bc + ad} \right) + \left( {b{e_2} + af_2} \right)}}{​{2\left( {ac + a{e_2}} \right)}} < \frac{​{d + {f_2}}}{​{c + {e_2}}}

(2)不成立的一些:

(i)\frac{​{ad + bc}}{​{2ac}} < \frac{​{​{f_1}}}{​{​{e_1}}} < \frac{​{(ad + bc) + (a{f_1} + b{e_1})}}{​{2(ac + a{e_1})}}

(ii)\frac{​{​{f_1}}}{​{​{e_1}}} < \frac{​{ad + bc}}{​{2ac}} < \frac{​{(ad + bc) + (a{f_1} + b{e_1})}}{​{2(ac + a{e_1})}}

(i)\frac{​{ad + bc}}{​{2ac}} < \frac{​{​{f_2}}}{​{​{e_2}}} < \frac{​{(ad + bc) + (a{f_2} + b{e_2})}}{​{2(ac + a{e_2})}}

(ii)\frac{​{​{f_2}}}{​{​{e_2}}} < \frac{​{ad + bc}}{​{2ac}} < \frac{​{(ad + bc) + (a{f_2} + b{e_2})}}{​{2(ac + a{e_2})}}

比较重要的结论

(1)当\frac{​{ad + bc}}{​{2ac}} \le \frac{​{​{f_1}}}{​{​{e_1}}},那么最优的结果为${x^*} = \frac{​{ad + bc}}{​{2ac}}$

(2)当\frac{​{ad + bc}}{​{2ac}} > \frac{​{​{f_1}}}{​{​{e_1}}}

(2.1)当\frac{​{(ad + bc) + (a{f_1} + b{e_1})}}{​{2(ac + a{e_1})}} \le \frac{​{​{f_1}}}{​{​{e_1}}},那么第一分段与第二分段对比下最优的结果为{x^*} = \frac{​{​{f_1}}}{​{​{e_1}}},注意{f_0}(\frac{​{ad + bc}}{​{2ac}}) > {f_0}(\frac{​{​{f_1}}}{​{​{e_1}}})

(2.2)当\frac{​{(ad + bc) + (a{f_1} + b{e_1})}}{​{2(ac + a{e_1})}} > \frac{​{​{f_1}}}{​{​{e_1}}},那么第一分段与第二分段对比下最优的结果为{x^*} = \frac{​{(ad + bc) + (a{f_1} + b{e_1})}}{​{2(ac + a{e_1})}},注意{f_0}(\frac{​{ad + bc}}{​{2ac}}) > {f_1}(\frac{​{(ad + bc) + (a{f_1} + b{e_1})}}{​{2(ac + a{e_1})}})(可以利用mathematica验证);

(3)当\frac{​{ad + bc}}{​{2ac}} > \frac{​{​{f_2}}}{​{​{e_2}}}

(3.1)当\frac{​{(ad + bc) + (a{f_2} + b{e_2})}}{​{2(ac + a{e_2})}} \le \frac{​{​{f_2}}}{​{​{e_2}}},那么第一分段与第三分段对比下最优的结果为{x^*} = \frac{​{​{f_2}}}{​{​{e_2}}},注意{f_0}(\frac{​{ad + bc}}{​{2ac}}) > {f_0}(\frac{​{​{f_1}}}{​{​{e_1}}})

(3.2)当\frac{​{(ad + bc) + (a{f_2} + b{e_2})}}{​{2(ac + a{e_2})}} > \frac{​{​{f_2}}}{​{​{e_2}}},那么第一分段与第三分段对比下最优的结果为{x^*} = \frac{​{(ad + bc) + (a{f_2} + b{e_2})}}{​{2(ac + a{e_2})}},注意{f_0}(\frac{​{ad + bc}}{​{2ac}}) > {f_2}(\frac{​{(ad + bc) + (a{f_2} + b{e_2})}}{​{2(ac + a{e_2})}})(可以利用mathematica验证)。

那么,总而言之,我们可以得出G(x)\leq f_0(x),当且仅当${x^*} = \frac{​{ad + bc}}{​{2ac}}$时,等号取到,即G(x)= f_0(x)

该结论可以扩展到N个分段的情况下,也就是N个分段的函数的最优结果不会优于原函数f_0(x)的最优结果。

这篇关于一些数学经验总结——关于将原一元二次函数增加一些限制条件后最优结果的对比(主要针对公平关切相关的建模)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1147868

相关文章

Java中Switch Case多个条件处理方法举例

《Java中SwitchCase多个条件处理方法举例》Java中switch语句用于根据变量值执行不同代码块,适用于多个条件的处理,:本文主要介绍Java中SwitchCase多个条件处理的相... 目录前言基本语法处理多个条件示例1:合并相同代码的多个case示例2:通过字符串合并多个case进阶用法使用

shell编程之函数与数组的使用详解

《shell编程之函数与数组的使用详解》:本文主要介绍shell编程之函数与数组的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录shell函数函数的用法俩个数求和系统资源监控并报警函数函数变量的作用范围函数的参数递归函数shell数组获取数组的长度读取某下的

SpringBoot条件注解核心作用与使用场景详解

《SpringBoot条件注解核心作用与使用场景详解》SpringBoot的条件注解为开发者提供了强大的动态配置能力,理解其原理和适用场景是构建灵活、可扩展应用的关键,本文将系统梳理所有常用的条件注... 目录引言一、条件注解的核心机制二、SpringBoot内置条件注解详解1、@ConditionalOn

MySQL高级查询之JOIN、子查询、窗口函数实际案例

《MySQL高级查询之JOIN、子查询、窗口函数实际案例》:本文主要介绍MySQL高级查询之JOIN、子查询、窗口函数实际案例的相关资料,JOIN用于多表关联查询,子查询用于数据筛选和过滤,窗口函... 目录前言1. JOIN(连接查询)1.1 内连接(INNER JOIN)1.2 左连接(LEFT JOI

MySQL中FIND_IN_SET函数与INSTR函数用法解析

《MySQL中FIND_IN_SET函数与INSTR函数用法解析》:本文主要介绍MySQL中FIND_IN_SET函数与INSTR函数用法解析,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友一... 目录一、功能定义与语法1、FIND_IN_SET函数2、INSTR函数二、本质区别对比三、实际场景案例分

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序

C语言函数递归实际应用举例详解

《C语言函数递归实际应用举例详解》程序调用自身的编程技巧称为递归,递归做为一种算法在程序设计语言中广泛应用,:本文主要介绍C语言函数递归实际应用举例的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录前言一、递归的概念与思想二、递归的限制条件 三、递归的实际应用举例(一)求 n 的阶乘(二)顺序打印

C/C++错误信息处理的常见方法及函数

《C/C++错误信息处理的常见方法及函数》C/C++是两种广泛使用的编程语言,特别是在系统编程、嵌入式开发以及高性能计算领域,:本文主要介绍C/C++错误信息处理的常见方法及函数,文中通过代码介绍... 目录前言1. errno 和 perror()示例:2. strerror()示例:3. perror(

Kotlin 作用域函数apply、let、run、with、also使用指南

《Kotlin作用域函数apply、let、run、with、also使用指南》在Kotlin开发中,作用域函数(ScopeFunctions)是一组能让代码更简洁、更函数式的高阶函数,本文将... 目录一、引言:为什么需要作用域函数?二、作用域函China编程数详解1. apply:对象配置的 “流式构建器”最

SpringIntegration消息路由之Router的条件路由与过滤功能

《SpringIntegration消息路由之Router的条件路由与过滤功能》本文详细介绍了Router的基础概念、条件路由实现、基于消息头的路由、动态路由与路由表、消息过滤与选择性路由以及错误处理... 目录引言一、Router基础概念二、条件路由实现三、基于消息头的路由四、动态路由与路由表五、消息过滤