动手学深度学习(Pytorch版)代码实践 -卷积神经网络-27含并行连结的网络GoogLeNet

本文主要是介绍动手学深度学习(Pytorch版)代码实践 -卷积神经网络-27含并行连结的网络GoogLeNet,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

27含并行连结的网络GoogLeNet

在这里插入图片描述
在这里插入图片描述

import torch
from torch import nn
from torch.nn import functional as F
import liliPytorch as lp
import matplotlib.pyplot as pltclass Inception(nn.Module):# c1--c4是每条路径的输出通道数def __init__(self, in_channels, c1, c2, c3, c4, **kwargs):super().__init__()# super(Inception, self).__init__(**kwargs)# 线路1,单1x1卷积层self.p1_1 = nn.Conv2d(in_channels, c1, kernel_size=1)# 线路2,1x1卷积层后接3x3卷积层self.p2_1 = nn.Conv2d(in_channels, c2[0], kernel_size=1)self.p2_2 = nn.Conv2d(c2[0], c2[1], kernel_size=3, padding=1)# 线路3,1x1卷积层后接5x5卷积层self.p3_1 = nn.Conv2d(in_channels, c3[0], kernel_size=1)self.p3_2 = nn.Conv2d(c3[0], c3[1], kernel_size=5, padding=2)# 线路4,3x3最大汇聚层后接1x1卷积层self.p4_1 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1)self.p4_2 = nn.Conv2d(in_channels, c4, kernel_size=1)def forward(self, x):# 经过每条路径,并应用 ReLU 激活函数p1 = F.relu(self.p1_1(x))p2 = F.relu(self.p2_2(F.relu(self.p2_1(x))))p3 = F.relu(self.p3_2(F.relu(self.p3_1(x))))p4 = F.relu(self.p4_2(self.p4_1(x)))# 在通道维度上连结输出return torch.cat((p1, p2, p3, p4), dim=1)# 定义模型的各个模块
b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3), # 第一个卷积层nn.ReLU(),                                            # 激活函数nn.MaxPool2d(kernel_size=3, stride=2, padding=1)      # 最大汇聚层
)b2 = nn.Sequential(nn.Conv2d(64, 64, kernel_size=1),                     # 1x1卷积层nn.ReLU(),                                            # 激活函数nn.Conv2d(64, 192, kernel_size=3, padding=1),         # 3x3卷积层nn.ReLU(),                                            # 激活函数nn.MaxPool2d(kernel_size=3, stride=2, padding=1)      # 最大汇聚层
)b3 = nn.Sequential(Inception(192, 64, (96, 128), (16, 32), 32),          # 第一个Inception块Inception(256, 128, (128, 192), (32, 96), 64),        # 第二个Inception块nn.MaxPool2d(kernel_size=3, stride=2, padding=1)      # 最大汇聚层
)b4 = nn.Sequential(Inception(480, 192, (96, 208), (16, 48), 64),         # 第一个Inception块Inception(512, 160, (112, 224), (24, 64), 64),        # 第二个Inception块Inception(512, 128, (128, 256), (24, 64), 64),        # 第三个Inception块Inception(512, 112, (144, 288), (32, 64), 64),        # 第四个Inception块Inception(528, 256, (160, 320), (32, 128), 128),      # 第五个Inception块nn.MaxPool2d(kernel_size=3, stride=2, padding=1)      # 最大汇聚层
)b5 = nn.Sequential(Inception(832, 256, (160, 320), (32, 128), 128),      # 第一个Inception块Inception(832, 384, (192, 384), (48, 128), 128),      # 第二个Inception块nn.AdaptiveAvgPool2d((1, 1)),                         # 自适应平均汇聚层nn.Flatten()                                          # 展平层
)# 将所有模块串联成一个完整的模型
net = nn.Sequential(b1,      # 第一模块b2,      # 第二模块b3,      # 第三模块b4,      # 第四模块b5,      # 第五模块nn.Linear(1024, 10)  # 最后一层全连接层,输出10个类别
)# 创建一个随机输入张量,并通过每一层,打印输出形状
X = torch.rand(size=(1, 1, 96, 96))
for layer in net:X = layer(X)print(layer.__class__.__name__, 'output shape:\t', X.shape)# 训练参数
lr, num_epochs, batch_size = 0.1, 10, 128
# 加载数据集
train_iter, test_iter = lp.loda_data_fashion_mnist(batch_size, resize=96)
# 训练模型
lp.train_ch6(net, train_iter, test_iter, num_epochs, lr, lp.try_gpu())
# 显示训练过程中的图表
plt.show()# 训练结果:
# 损失 0.254, 训练准确率 0.904, 测试准确率 0.866
# 1534.2 examples/sec on cuda:0# loss 0.246, train acc 0.906, test acc 0.891
# 1492.9 examples/sec on cuda:0

运行效果:
在这里插入图片描述

这篇关于动手学深度学习(Pytorch版)代码实践 -卷积神经网络-27含并行连结的网络GoogLeNet的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1087141

相关文章

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

利用Python调试串口的示例代码

《利用Python调试串口的示例代码》在嵌入式开发、物联网设备调试过程中,串口通信是最基础的调试手段本文将带你用Python+ttkbootstrap打造一款高颜值、多功能的串口调试助手,需要的可以了... 目录概述:为什么需要专业的串口调试工具项目架构设计1.1 技术栈选型1.2 关键类说明1.3 线程模

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

Spring Boot 整合 SSE的高级实践(Server-Sent Events)

《SpringBoot整合SSE的高级实践(Server-SentEvents)》SSE(Server-SentEvents)是一种基于HTTP协议的单向通信机制,允许服务器向浏览器持续发送实... 目录1、简述2、Spring Boot 中的SSE实现2.1 添加依赖2.2 实现后端接口2.3 配置超时时

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

Java Optional的使用技巧与最佳实践

《JavaOptional的使用技巧与最佳实践》在Java中,Optional是用于优雅处理null的容器类,其核心目标是显式提醒开发者处理空值场景,避免NullPointerExce... 目录一、Optional 的核心用途二、使用技巧与最佳实践三、常见误区与反模式四、替代方案与扩展五、总结在 Java

使用Java将DOCX文档解析为Markdown文档的代码实现

《使用Java将DOCX文档解析为Markdown文档的代码实现》在现代文档处理中,Markdown(MD)因其简洁的语法和良好的可读性,逐渐成为开发者、技术写作者和内容创作者的首选格式,然而,许多文... 目录引言1. 工具和库介绍2. 安装依赖库3. 使用Apache POI解析DOCX文档4. 将解析

C++使用printf语句实现进制转换的示例代码

《C++使用printf语句实现进制转换的示例代码》在C语言中,printf函数可以直接实现部分进制转换功能,通过格式说明符(formatspecifier)快速输出不同进制的数值,下面给大家分享C+... 目录一、printf 原生支持的进制转换1. 十进制、八进制、十六进制转换2. 显示进制前缀3. 指