动手学深度学习(Pytorch版)代码实践 -卷积神经网络-28批量规范化

本文主要是介绍动手学深度学习(Pytorch版)代码实践 -卷积神经网络-28批量规范化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

28批量规范化

"""可持续加速深层网络的收敛速度"""
import torch
from torch import nn
import liliPytorch as lp
import matplotlib.pyplot as pltdef batch_norm(X, gamma, beta, moving_mean, moving_var, eps, momentum):"""实现一个具有张量的批量规范化层。"""# 如果启用了梯度计算,torch.is_grad_enabled() 返回 True;否则返回 False。if not torch.is_grad_enabled():# torch.no_grad() 是一个上下文管理器,用于临时禁用梯度计算# torch.enable_grad() 是一个上下文管理器,用于在禁用梯度计算的上下文中重新启用梯度计算。X_hat = (X - moving_mean) / torch.sqrt(moving_var + eps)else:assert len(X.shape) in (2, 4)if len(X.shape) == 2:# 使用全连接层的情况,计算特征维上的均值和方差mean = X.mean(dim=0) # 计算张量 X 沿着第 0 维的平均值# 维度 0 代表样本数量,即沿着每个特征计算所有样本的平均值。var = ((X - mean) ** 2).mean(dim=0)else:# 使用二维卷积层的情况,计算通道维上(axis=1)的均值和方差。# 这里我们需要保持X的形状以便后面可以做广播运算mean = X.mean(dim=(0, 2, 3), keepdim=True)var = ((X - mean) ** 2).mean(dim=(0, 2, 3), keepdim=True)# 训练模式下,用当前的均值和方差做标准化X_hat = (X - mean) / torch.sqrt(var + eps)# 更新移动平均的均值和方差moving_mean = momentum * moving_mean + (1.0 - momentum) * meanmoving_var = momentum * moving_var + (1.0 - momentum) * var# gamma 和 beta 的更新是通过反向传播和优化器自动完成的Y = gamma * X_hat + beta # 缩放和移位return Y, moving_mean.data, moving_var.dataclass BatchNorm(nn.Module):# num_features:完全连接层的输出数量或卷积层的输出通道数。# num_dims:2表示完全连接层,4表示卷积层def __init__(self, num_features, num_dims):super().__init__()if num_dims == 2:shape = (1, num_features)else:shape = (1, num_features, 1, 1)# 参与求梯度和迭代的拉伸和偏移参数,分别初始化成1和0self.gamma = nn.Parameter(torch.ones(shape))self.beta = nn.Parameter(torch.zeros(shape))# 非模型参数的变量初始化为0和1# 经过归一化处理后的数据均值接近于零。因此,将滑动均值初始化为0,是对数据初始均值的一种合理假设。self.moving_mean = torch.zeros(shape)# 方差表示数据的离散程度。将滑动方差初始化为1,意味着假设数据的初始方差为1,# 即数据分布接近标准正态分布。这样初始化可以避免初始阶段的数值不稳定。self.moving_var = torch.ones(shape)def forward(self, X):# 如果X不在内存上,将moving_mean和moving_var# 复制到X所在GPU上                              if self.moving_mean.device != X.device:self.moving_mean = self.moving_mean.to(X.device)self.moving_var = self.moving_var.to(X.device)# 保存更新过的moving_mean和moving_varY, self.moving_mean, self.moving_var = batch_norm(X, self.gamma, self.beta, self.moving_mean,self.moving_var, eps=1e-5, momentum=0.9)return Y#使用批量规范化层的 LeNet
net = nn.Sequential(nn.Conv2d(1, 6,  kernel_size=5, padding=2), # 卷积层1:输入通道数1,输出通道数6,卷积核大小5x5,填充2BatchNorm(num_features=6, num_dims=4),nn.ReLU(), # 激活函数nn.AvgPool2d(kernel_size=2, stride=2), # 平均池化层1:池化窗口大小2x2,步幅2nn.Conv2d(6, 16, kernel_size=5), # 卷积层2:输入通道数6,输出通道数16,卷积核大小5x5BatchNorm(num_features=16, num_dims=4),nn.ReLU(), nn.AvgPool2d(kernel_size=2, stride=2), # 平均池化层2:池化窗口大小2x2,步幅2nn.Flatten(), # 展平层:将多维输入展平为1维nn.Linear(16 * 5 * 5, 120), # 全连接层1:输入节点数16*5*5,输出节点数120BatchNorm(num_features=120, num_dims=2),nn.ReLU(),nn.Linear(120, 84), # 全连接层2:输入节点数120,输出节点数84BatchNorm(num_features=84, num_dims=2),nn.ReLU(), nn.Linear(84, 10) # 全连接层3:输入节点数84,输出节点数10(对应10个分类)
)lr, num_epochs, batch_size = 1.0, 10, 256
train_iter, test_iter = lp.loda_data_fashion_mnist(batch_size)
# lp.train_ch6(net, train_iter, test_iter, num_epochs, lr, lp.try_gpu())
# plt.show()# loss 0.200, train acc 0.925, test acc 0.812
# 34957.3 examples/sec on cuda:0# loss 0.189, train acc 0.928, test acc 0.894
# 33471.2 examples/sec on cuda:0#简明实现
net = nn.Sequential(nn.Conv2d(1, 6, kernel_size=5), nn.BatchNorm2d(6), nn.ReLU(),nn.AvgPool2d(kernel_size=2, stride=2),nn.Conv2d(6, 16, kernel_size=5), nn.BatchNorm2d(16), nn.ReLU(),nn.AvgPool2d(kernel_size=2, stride=2), nn.Flatten(),nn.Linear(256, 120), nn.BatchNorm1d(120), nn.ReLU(),nn.Linear(120, 84), nn.BatchNorm1d(84), nn.ReLU(),nn.Linear(84, 10)
)
lp.train_ch6(net, train_iter, test_iter, num_epochs, lr, lp.try_gpu())
plt.show()# nn.Sigmoid()
# loss 0.263, train acc 0.902, test acc 0.833
# 46935.0 examples/sec on cuda:0# nn.ReLU()
# loss 0.224, train acc 0.914, test acc 0.874
# 44479.2 examples/sec on cuda:0
"""
通常高级API变体运行速度快得多,因为它的代码已编译为C++或CUDA,而我们的自定义代码由Python实现。
"""

在这里插入图片描述

这篇关于动手学深度学习(Pytorch版)代码实践 -卷积神经网络-28批量规范化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1086931

相关文章

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码

《在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码》在MyBatis的XML映射文件中,trim元素用于动态添加SQL语句的一部分,处理前缀、后缀及多余的逗号或连接符,示... 在MyBATis的XML映射文件中,<trim>元素用于动态地添加SQL语句的一部分,例如SET或W

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

PyTorch使用教程之Tensor包详解

《PyTorch使用教程之Tensor包详解》这篇文章介绍了PyTorch中的张量(Tensor)数据结构,包括张量的数据类型、初始化、常用操作、属性等,张量是PyTorch框架中的核心数据结构,支持... 目录1、张量Tensor2、数据类型3、初始化(构造张量)4、常用操作5、常用属性5.1 存储(st

五大特性引领创新! 深度操作系统 deepin 25 Preview预览版发布

《五大特性引领创新!深度操作系统deepin25Preview预览版发布》今日,深度操作系统正式推出deepin25Preview版本,该版本集成了五大核心特性:磐石系统、全新DDE、Tr... 深度操作系统今日发布了 deepin 25 Preview,新版本囊括五大特性:磐石系统、全新 DDE、Tree

Python在固定文件夹批量创建固定后缀的文件(方法详解)

《Python在固定文件夹批量创建固定后缀的文件(方法详解)》文章讲述了如何使用Python批量创建后缀为.md的文件夹,生成100个,代码中需要修改的路径、前缀和后缀名,并提供了注意事项和代码示例,... 目录1. python需求的任务2. Python代码的实现3. 代码修改的位置4. 运行结果5.

python多进程实现数据共享的示例代码

《python多进程实现数据共享的示例代码》本文介绍了Python中多进程实现数据共享的方法,包括使用multiprocessing模块和manager模块这两种方法,具有一定的参考价值,感兴趣的可以... 目录背景进程、进程创建进程间通信 进程间共享数据共享list实践背景 安卓ui自动化框架,使用的是

使用Python实现批量访问URL并解析XML响应功能

《使用Python实现批量访问URL并解析XML响应功能》在现代Web开发和数据抓取中,批量访问URL并解析响应内容是一个常见的需求,本文将详细介绍如何使用Python实现批量访问URL并解析XML响... 目录引言1. 背景与需求2. 工具方法实现2.1 单URL访问与解析代码实现代码说明2.2 示例调用

SpringBoot生成和操作PDF的代码详解

《SpringBoot生成和操作PDF的代码详解》本文主要介绍了在SpringBoot项目下,通过代码和操作步骤,详细的介绍了如何操作PDF,希望可以帮助到准备通过JAVA操作PDF的你,项目框架用的... 目录本文简介PDF文件简介代码实现PDF操作基于PDF模板生成,并下载完全基于代码生成,并保存合并P