深度学习 --- stanford cs231学习笔记五(训练神经网络的几个重要组成部分之二,数据的预处理)

本文主要是介绍深度学习 --- stanford cs231学习笔记五(训练神经网络的几个重要组成部分之二,数据的预处理),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

训练神经网络的几个重要组成部分 二

2 Data Preprocessing数据的预处理

数据预处理的几种方法


2,1 数据的零点中心化

        数据的零点中心化的目的就是为了把数据的整体分布拉回到原点附近,也就是让数据的整体均值变为0。


 2,2 数据的标准化

        数据的标准化这个词比较难理解,从统计学的角度讲,经过这一步的处理,原始数据的标准差会变为1。换句话说,我的个人理解是如果原始数据分散的比较开,也就是高斯曲线的sigma比较大,则经过这一步处理后,分散的比较开的数据会被拉拢回来。比如说下图黄色曲线的数据分布。

        如果,原始数据本来分布的就过于集中,经过这一步处理后,数据反而会变的相对松散。例如下图蓝色曲线的数据分布。

        数据的零点中心化和标准化是神经网络的数据预处理中最为常见的两个方法。可以用公式总结为:

y=\frac{x-mean}{sigma}

其中,mean表示均值,sigma表示标准差。下面我通过两个例子看看这一过程究竟发生了什么。


2,3 以一维数据为例:

        下图是我在jupyter notebook中所画的5个狗狗身高的一维数据集。x表示的是样本数,y表示的是该样本的高度。

import numpy as np
import matplotlib.pyplot as pltdata = [600,470,170,430,300]
num=len(data)
x=np.arange(num)
plt.figure()
plt.stem(x,data,label='dog(mm)')
plt.legend()

分别求出这组数据的mean和sigma并在图中表示出来

print('data=',data)
mean_data=np.mean(data)
print('mean=',mean_data)
sigma_data=np.std(data)
print('sigma=',sigma_data)

plt.figure
plt.stem(x,data,label='dog(mm)')
plt.plot(x,[mean_data]*num,'r-',label='mean')
plt.plot(x,[mean_data+sigma_data]*num,'b--',label='mean+sigma')
plt.plot(x,[mean_data-sigma_data]*num,'b--',label='mean-sigma')
plt.legend(loc='upper right')

​原始数据的直方图 

plt.hist(data)
plt.title('Histogram of dog(mm)')

减去均值后的数据与直方图: 

        与原始数据相比减去均值后的数据均值为0,也就是说,原来以394mm为中心分布的数据变成了以0为中心分布的数据。

plt.hist(data1)
plt.title('Histogram of dog-mean (mm)')

​减去均值后再除以标准差后的数据及其分布:

        除以标准差之后的数据,整个数据的标准差会变为1。这一变化在图像上会表现为数据的分布从原始状态中比较分散的情况,变成了比较集中的分布。        

data2=data1/sigma_data
mean_data2=np.mean(data2)
sigma_data2=np.std(data2)
print('(dog-mean)/std=',data2)
print('mean=',mean_data2)
print('sigma=',sigma_data2)
plt.figure
plt.stem(x,data2,label='dog(mm)')
plt.plot(x,[mean_data2]*num,'r-',label='mean')
plt.plot(x,[mean_data2+sigma_data2]*num,'b--',label='mean+sigma')
plt.plot(x,[mean_data2-sigma_data2]*num,'b--',label='mean-sigma')
plt.legend(loc='upper right')

plt.hist(data2)
plt.title('Histogram of (dog-mean)/std (mm)')


2,4 以二维鸢尾花数据集数据为例:

原始数据:

from sklearn.datasets import load_iris# 加载 Iris 数据集
iris = load_iris()
X = iris.data[:, :2]  # 只取前两个特征作为示例
print('X.size=',X.shape)
y = iris.target# 绘制散点图
fig,ax=plt.subplots(figsize=(8, 6))
scatter = ax.scatter(X[:, 0], X[:, 1], c=y, cmap='viridis', s=50, alpha=0.8, edgecolors='k')
plt.title('Scatter Plot of Iris Dataset')
plt.xlabel('x=Sepal Length (cm)')
plt.ylabel('y=Sepal Width (cm)')
plt.colorbar(scatter, label='Species', ticks=[0, 1, 2], format=lambda i, _: iris.target_names[int(i)])# 绘制 x 轴和 y 轴
ax.axhline(0, color='black', linewidth=3)  # 绘制水平的 x 轴
ax.axvline(0, color='black', linewidth=3)  # 绘制垂直的 y 轴plt.show()

        在二维坐标系中,x轴和y轴分别表示鸢尾花花瓣的长度和宽度,各150个数据。 注意,此时的数据分布是偏离原点的。

plt.hist(X)
plt.title('Histogram of x,y(cm)')

分别计算两个维度的mean和std:

col_avg=np.mean(X,axis=0)
print('col_avg.size=',col_avg.shape)
print('x_avg=',col_avg[0],'(cm)')
print('y_avg=',col_avg[1],'(cm)')col_sigma=np.std(X,axis=0)
print('col_sigma.size=',col_sigma.shape)
print('x_sigma=',col_sigma[0],'(cm)')
print('y_sigma=',col_sigma[1],'(cm)')

x,y两个维度的数据各自减去其均值:

        先按列求各个维度的均值,然后让各自维度的数据减去各自维度的均值。 

#reshape con_avg
col_avg2d=np.tile(col_avg,(X.shape[0],1))
print('col_avg2d.size=',col_avg2d.shape)
X-=col_avg2d
print('X.size=',X.shape)
# 绘制散点图
fig,ax=plt.subplots(figsize=(8, 6))
scatter = ax.scatter(X[:, 0], X[:, 1], c=y, cmap='viridis', s=50, alpha=0.8, edgecolors='k')
plt.title('Scatter Plot of Iris Dataset')
plt.xlabel('x=Sepal Length (cm)')
plt.ylabel('y=Sepal Width (cm)')
plt.colorbar(scatter, label='Species', ticks=[0, 1, 2], format=lambda i, _: iris.target_names[int(i)])# 绘制 x 轴和 y 轴
ax.axhline(0, color='black', linewidth=3)  # 绘制水平的 x 轴
ax.axvline(0, color='black', linewidth=3)  # 绘制垂直的 y 轴plt.show()

         减去均值后的数据分布是以原点为中心的。

plt.hist(X)
plt.title('Histogram of x,y(cm)')

在直方图中也可以看到新的数据集是以0为中心的。 

两个维度分别除以各自维度的标准差:

#reshape con_sigma
col_sigma2d=np.tile(col_sigma,(X.shape[0],1))
print('col_sigma2d.size=',col_sigma2d.shape)
X/=col_sigma2d
print('X.size=',X.shape)
# 绘制散点图
fig,ax=plt.subplots(figsize=(8, 6))
scatter = ax.scatter(X[:, 0], X[:, 1], c=y, cmap='viridis', s=50, alpha=0.8, edgecolors='k')
plt.title('Scatter Plot of Iris Dataset')
plt.xlabel('x=Sepal Length (cm)')
plt.ylabel('y=Sepal Width (cm)')
plt.colorbar(scatter, label='Species', ticks=[0, 1, 2], format=lambda i, _: iris.target_names[int(i)])# 绘制 x 轴和 y 轴
ax.axhline(0, color='black', linewidth=3)  # 绘制水平的 x 轴
ax.axvline(0, color='black', linewidth=3)  # 绘制垂直的 y 轴plt.show()

        如果原始数据分布的较为集中(即,标准差<1),除以标准差之后数据的分布会变得相对松散。如果原始数据分布的较为分散(即,标准差>1),除以标准差之后数据的分布会变得相对集中。

col_avg=np.mean(X,axis=0)
print('col_avg.size=',col_avg.shape)
print('x_avg=',col_avg[0],'(cm)')
print('y_avg=',col_avg[1],'(cm)')col_sigma=np.std(X,axis=0)
print('col_sigma.size=',col_sigma.shape)
print('x_sigma=',col_sigma[0],'(cm)')
print('y_sigma=',col_sigma[1],'(cm)')

经过预处理后的数据,均值为0,标准差为1. 

plt.hist(X)
plt.title('Histogram of x,y(cm)')


 2,5 在实际应用中数据预处理的常用方法


(全文完) 

--- 作者,松下J27

 参考文献(鸣谢): 

1,Stanford University CS231n: Deep Learning for Computer Vision

2,训练神经网络(第一部分)_哔哩哔哩_bilibili

3,10 Training Neural Networks I_哔哩哔哩_bilibili

4,Schedule | EECS 498-007 / 598-005: Deep Learning for Computer Vision 

5,标准差和方差

版权声明:所有的笔记,可能来自很多不同的网站和说明,在此没法一一列出,如有侵权,请告知,立即删除。欢迎大家转载,但是,如果有人引用或者COPY我的文章,必须在你的文章中注明你所使用的图片或者文字来自于我的文章,否则,侵权必究。 ----松下J27

这篇关于深度学习 --- stanford cs231学习笔记五(训练神经网络的几个重要组成部分之二,数据的预处理)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1080418

相关文章

Python在二进制文件中进行数据搜索的实战指南

《Python在二进制文件中进行数据搜索的实战指南》在二进制文件中搜索特定数据是编程中常见的任务,尤其在日志分析、程序调试和二进制数据处理中尤为重要,下面我们就来看看如何使用Python实现这一功能吧... 目录简介1. 二进制文件搜索概述2. python二进制模式文件读取(rb)2.1 二进制模式与文本

C#实现将XML数据自动化地写入Excel文件

《C#实现将XML数据自动化地写入Excel文件》在现代企业级应用中,数据处理与报表生成是核心环节,本文将深入探讨如何利用C#和一款优秀的库,将XML数据自动化地写入Excel文件,有需要的小伙伴可以... 目录理解XML数据结构与Excel的对应关系引入高效工具:使用Spire.XLS for .NETC

C++ 右值引用(rvalue references)与移动语义(move semantics)深度解析

《C++右值引用(rvaluereferences)与移动语义(movesemantics)深度解析》文章主要介绍了C++右值引用和移动语义的设计动机、基本概念、实现方式以及在实际编程中的应用,... 目录一、右值引用(rvalue references)与移动语义(move semantics)设计动机1

MySQL数据目录迁移的完整过程

《MySQL数据目录迁移的完整过程》文章详细介绍了将MySQL数据目录迁移到新硬盘的整个过程,包括新硬盘挂载、创建新的数据目录、迁移数据(推荐使用两遍rsync方案)、修改MySQL配置文件和重启验证... 目录1,新硬盘挂载(如果有的话)2,创建新的 mysql 数据目录3,迁移 MySQL 数据(推荐两

Python数据验证神器Pydantic库的使用和实践中的避坑指南

《Python数据验证神器Pydantic库的使用和实践中的避坑指南》Pydantic是一个用于数据验证和设置的库,可以显著简化API接口开发,文章通过一个实际案例,展示了Pydantic如何在生产环... 目录1️⃣ 崩溃时刻:当你的API接口又双叒崩了!2️⃣ 神兵天降:3行代码解决验证难题3️⃣ 深度

MySQL快速复制一张表的四种核心方法(包括表结构和数据)

《MySQL快速复制一张表的四种核心方法(包括表结构和数据)》本文详细介绍了四种复制MySQL表(结构+数据)的方法,并对每种方法进行了对比分析,适用于不同场景和数据量的复制需求,特别是针对超大表(1... 目录一、mysql 复制表(结构+数据)的 4 种核心方法(面试结构化回答)方法 1:CREATE

详解C++ 存储二进制数据容器的几种方法

《详解C++存储二进制数据容器的几种方法》本文主要介绍了详解C++存储二进制数据容器,包括std::vector、std::array、std::string、std::bitset和std::ve... 目录1.std::vector<uint8_t>(最常用)特点:适用场景:示例:2.std::arra

C# 预处理指令(# 指令)的具体使用

《C#预处理指令(#指令)的具体使用》本文主要介绍了C#预处理指令(#指令)的具体使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录1、预处理指令的本质2、条件编译指令2.1 #define 和 #undef2.2 #if, #el

SQL 注入攻击(SQL Injection)原理、利用方式与防御策略深度解析

《SQL注入攻击(SQLInjection)原理、利用方式与防御策略深度解析》本文将从SQL注入的基本原理、攻击方式、常见利用手法,到企业级防御方案进行全面讲解,以帮助开发者和安全人员更系统地理解... 目录一、前言二、SQL 注入攻击的基本概念三、SQL 注入常见类型分析1. 基于错误回显的注入(Erro

MySQL中的DELETE删除数据及注意事项

《MySQL中的DELETE删除数据及注意事项》MySQL的DELETE语句是数据库操作中不可或缺的一部分,通过合理使用索引、批量删除、避免全表删除、使用TRUNCATE、使用ORDERBY和LIMI... 目录1. 基本语法单表删除2. 高级用法使用子查询删除删除多表3. 性能优化策略使用索引批量删除避免