深度学习 --- stanford cs231学习笔记五(训练神经网络的几个重要组成部分之二,数据的预处理)

本文主要是介绍深度学习 --- stanford cs231学习笔记五(训练神经网络的几个重要组成部分之二,数据的预处理),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

训练神经网络的几个重要组成部分 二

2 Data Preprocessing数据的预处理

数据预处理的几种方法


2,1 数据的零点中心化

        数据的零点中心化的目的就是为了把数据的整体分布拉回到原点附近,也就是让数据的整体均值变为0。


 2,2 数据的标准化

        数据的标准化这个词比较难理解,从统计学的角度讲,经过这一步的处理,原始数据的标准差会变为1。换句话说,我的个人理解是如果原始数据分散的比较开,也就是高斯曲线的sigma比较大,则经过这一步处理后,分散的比较开的数据会被拉拢回来。比如说下图黄色曲线的数据分布。

        如果,原始数据本来分布的就过于集中,经过这一步处理后,数据反而会变的相对松散。例如下图蓝色曲线的数据分布。

        数据的零点中心化和标准化是神经网络的数据预处理中最为常见的两个方法。可以用公式总结为:

y=\frac{x-mean}{sigma}

其中,mean表示均值,sigma表示标准差。下面我通过两个例子看看这一过程究竟发生了什么。


2,3 以一维数据为例:

        下图是我在jupyter notebook中所画的5个狗狗身高的一维数据集。x表示的是样本数,y表示的是该样本的高度。

import numpy as np
import matplotlib.pyplot as pltdata = [600,470,170,430,300]
num=len(data)
x=np.arange(num)
plt.figure()
plt.stem(x,data,label='dog(mm)')
plt.legend()

分别求出这组数据的mean和sigma并在图中表示出来

print('data=',data)
mean_data=np.mean(data)
print('mean=',mean_data)
sigma_data=np.std(data)
print('sigma=',sigma_data)

plt.figure
plt.stem(x,data,label='dog(mm)')
plt.plot(x,[mean_data]*num,'r-',label='mean')
plt.plot(x,[mean_data+sigma_data]*num,'b--',label='mean+sigma')
plt.plot(x,[mean_data-sigma_data]*num,'b--',label='mean-sigma')
plt.legend(loc='upper right')

​原始数据的直方图 

plt.hist(data)
plt.title('Histogram of dog(mm)')

减去均值后的数据与直方图: 

        与原始数据相比减去均值后的数据均值为0,也就是说,原来以394mm为中心分布的数据变成了以0为中心分布的数据。

plt.hist(data1)
plt.title('Histogram of dog-mean (mm)')

​减去均值后再除以标准差后的数据及其分布:

        除以标准差之后的数据,整个数据的标准差会变为1。这一变化在图像上会表现为数据的分布从原始状态中比较分散的情况,变成了比较集中的分布。        

data2=data1/sigma_data
mean_data2=np.mean(data2)
sigma_data2=np.std(data2)
print('(dog-mean)/std=',data2)
print('mean=',mean_data2)
print('sigma=',sigma_data2)
plt.figure
plt.stem(x,data2,label='dog(mm)')
plt.plot(x,[mean_data2]*num,'r-',label='mean')
plt.plot(x,[mean_data2+sigma_data2]*num,'b--',label='mean+sigma')
plt.plot(x,[mean_data2-sigma_data2]*num,'b--',label='mean-sigma')
plt.legend(loc='upper right')

plt.hist(data2)
plt.title('Histogram of (dog-mean)/std (mm)')


2,4 以二维鸢尾花数据集数据为例:

原始数据:

from sklearn.datasets import load_iris# 加载 Iris 数据集
iris = load_iris()
X = iris.data[:, :2]  # 只取前两个特征作为示例
print('X.size=',X.shape)
y = iris.target# 绘制散点图
fig,ax=plt.subplots(figsize=(8, 6))
scatter = ax.scatter(X[:, 0], X[:, 1], c=y, cmap='viridis', s=50, alpha=0.8, edgecolors='k')
plt.title('Scatter Plot of Iris Dataset')
plt.xlabel('x=Sepal Length (cm)')
plt.ylabel('y=Sepal Width (cm)')
plt.colorbar(scatter, label='Species', ticks=[0, 1, 2], format=lambda i, _: iris.target_names[int(i)])# 绘制 x 轴和 y 轴
ax.axhline(0, color='black', linewidth=3)  # 绘制水平的 x 轴
ax.axvline(0, color='black', linewidth=3)  # 绘制垂直的 y 轴plt.show()

        在二维坐标系中,x轴和y轴分别表示鸢尾花花瓣的长度和宽度,各150个数据。 注意,此时的数据分布是偏离原点的。

plt.hist(X)
plt.title('Histogram of x,y(cm)')

分别计算两个维度的mean和std:

col_avg=np.mean(X,axis=0)
print('col_avg.size=',col_avg.shape)
print('x_avg=',col_avg[0],'(cm)')
print('y_avg=',col_avg[1],'(cm)')col_sigma=np.std(X,axis=0)
print('col_sigma.size=',col_sigma.shape)
print('x_sigma=',col_sigma[0],'(cm)')
print('y_sigma=',col_sigma[1],'(cm)')

x,y两个维度的数据各自减去其均值:

        先按列求各个维度的均值,然后让各自维度的数据减去各自维度的均值。 

#reshape con_avg
col_avg2d=np.tile(col_avg,(X.shape[0],1))
print('col_avg2d.size=',col_avg2d.shape)
X-=col_avg2d
print('X.size=',X.shape)
# 绘制散点图
fig,ax=plt.subplots(figsize=(8, 6))
scatter = ax.scatter(X[:, 0], X[:, 1], c=y, cmap='viridis', s=50, alpha=0.8, edgecolors='k')
plt.title('Scatter Plot of Iris Dataset')
plt.xlabel('x=Sepal Length (cm)')
plt.ylabel('y=Sepal Width (cm)')
plt.colorbar(scatter, label='Species', ticks=[0, 1, 2], format=lambda i, _: iris.target_names[int(i)])# 绘制 x 轴和 y 轴
ax.axhline(0, color='black', linewidth=3)  # 绘制水平的 x 轴
ax.axvline(0, color='black', linewidth=3)  # 绘制垂直的 y 轴plt.show()

         减去均值后的数据分布是以原点为中心的。

plt.hist(X)
plt.title('Histogram of x,y(cm)')

在直方图中也可以看到新的数据集是以0为中心的。 

两个维度分别除以各自维度的标准差:

#reshape con_sigma
col_sigma2d=np.tile(col_sigma,(X.shape[0],1))
print('col_sigma2d.size=',col_sigma2d.shape)
X/=col_sigma2d
print('X.size=',X.shape)
# 绘制散点图
fig,ax=plt.subplots(figsize=(8, 6))
scatter = ax.scatter(X[:, 0], X[:, 1], c=y, cmap='viridis', s=50, alpha=0.8, edgecolors='k')
plt.title('Scatter Plot of Iris Dataset')
plt.xlabel('x=Sepal Length (cm)')
plt.ylabel('y=Sepal Width (cm)')
plt.colorbar(scatter, label='Species', ticks=[0, 1, 2], format=lambda i, _: iris.target_names[int(i)])# 绘制 x 轴和 y 轴
ax.axhline(0, color='black', linewidth=3)  # 绘制水平的 x 轴
ax.axvline(0, color='black', linewidth=3)  # 绘制垂直的 y 轴plt.show()

        如果原始数据分布的较为集中(即,标准差<1),除以标准差之后数据的分布会变得相对松散。如果原始数据分布的较为分散(即,标准差>1),除以标准差之后数据的分布会变得相对集中。

col_avg=np.mean(X,axis=0)
print('col_avg.size=',col_avg.shape)
print('x_avg=',col_avg[0],'(cm)')
print('y_avg=',col_avg[1],'(cm)')col_sigma=np.std(X,axis=0)
print('col_sigma.size=',col_sigma.shape)
print('x_sigma=',col_sigma[0],'(cm)')
print('y_sigma=',col_sigma[1],'(cm)')

经过预处理后的数据,均值为0,标准差为1. 

plt.hist(X)
plt.title('Histogram of x,y(cm)')


 2,5 在实际应用中数据预处理的常用方法


(全文完) 

--- 作者,松下J27

 参考文献(鸣谢): 

1,Stanford University CS231n: Deep Learning for Computer Vision

2,训练神经网络(第一部分)_哔哩哔哩_bilibili

3,10 Training Neural Networks I_哔哩哔哩_bilibili

4,Schedule | EECS 498-007 / 598-005: Deep Learning for Computer Vision 

5,标准差和方差

版权声明:所有的笔记,可能来自很多不同的网站和说明,在此没法一一列出,如有侵权,请告知,立即删除。欢迎大家转载,但是,如果有人引用或者COPY我的文章,必须在你的文章中注明你所使用的图片或者文字来自于我的文章,否则,侵权必究。 ----松下J27

这篇关于深度学习 --- stanford cs231学习笔记五(训练神经网络的几个重要组成部分之二,数据的预处理)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1080418

相关文章

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

Redis 中的热点键和数据倾斜示例详解

《Redis中的热点键和数据倾斜示例详解》热点键是指在Redis中被频繁访问的特定键,这些键由于其高访问频率,可能导致Redis服务器的性能问题,尤其是在高并发场景下,本文给大家介绍Redis中的热... 目录Redis 中的热点键和数据倾斜热点键(Hot Key)定义特点应对策略示例数据倾斜(Data S

Python实现将MySQL中所有表的数据都导出为CSV文件并压缩

《Python实现将MySQL中所有表的数据都导出为CSV文件并压缩》这篇文章主要为大家详细介绍了如何使用Python将MySQL数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到... python将mysql数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到另一个

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

SpringBoot整合jasypt实现重要数据加密

《SpringBoot整合jasypt实现重要数据加密》Jasypt是一个专注于简化Java加密操作的开源工具,:本文主要介绍详细介绍了如何使用jasypt实现重要数据加密,感兴趣的小伙伴可... 目录jasypt简介 jasypt的优点SpringBoot使用jasypt创建mapper接口配置文件加密