解码 ResNet:残差块如何增强深度学习性能【数学推导】

2024-06-18 16:28

本文主要是介绍解码 ResNet:残差块如何增强深度学习性能【数学推导】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

ResNet简介

残差网络结构

残差网络(ResNet)是由何凯明等人在2015年提出的,它极大地提高了深度神经网络的训练效果,尤其是非常深的网络。ResNet的核心思想是引入“残差块”(Residual Block),通过跳跃连接(Shortcut Connection)解决深层网络的梯度消失和梯度爆炸问题。

结构示意图

  • 输入层
  • 一系列的卷积层(Conv Layers)
  • 残差块(Residual Blocks)
  • 全连接层(Fully Connected Layer)
  • 输出层

在传统的卷积神经网络中,每一层都会对输入的特征进行某种变换,比如卷积操作,然后直接输出这些变换后的结果到下一层。可以把这种变换看作是对输入进行处理和提取新的特征。
y l = F l ( x l ) \mathbf{y}_l = \mathcal{F}_l(\mathbf{x}_l) yl=Fl(xl)

而ResNet通过增加一条跳跃连接,使得每个残差块输出的是“变换后的特征+原始输入特征”,即:

y = F ( x , { W i } ) + x \mathbf{y} = \mathcal{F}(\mathbf{x}, \{W_i\}) + \mathbf{x} y=F(x,{Wi})+x

其中, F ( x , { W i } ) \mathcal{F}(\mathbf{x}, \{W_i\}) F(x,{Wi}) 表示通过多层卷积、激活等操作后的特征, x \mathbf{x} x 表示原始输入特征。

什么是跳跃连接?

跳跃连接(Shortcut Connection),又称为“短路连接”或“直连”,是一种直接将输入信号传递到输出信号的技术。具体来说,就是在每个残差块中,除了正常的变换路径外,还增加了一条直接连接输入和输出的路径。

为什么要使用跳跃连接?

在深层网络中,随着层数的增加,梯度可能会逐渐消失或者爆炸,这会导致网络很难训练。而跳跃连接的引入可以缓解这个问题,因为它允许梯度直接传递到前面的层,确保梯度不会消失。

跳跃连接如何缓解梯度消失和梯度爆炸问题

为了理解跳跃连接如何缓解梯度消失和梯度爆炸问题,我们需要从反向传播(Backpropagation)的角度分析梯度传递过程。

在传统的深层网络中,假设某一层的输入是 x l \mathbf{x}_l xl ,输出是 y l \mathbf{y}_l yl 。每层的变换函数记为 F l \mathcal{F}_l Fl,那么:

y l = F l ( x l ) \mathbf{y}_l = \mathcal{F}_l(\mathbf{x}_l) yl=Fl(xl)

而在ResNet中,增加了跳跃连接后,输出变为:

y l = F l ( x l ) + x l \mathbf{y}_l = \mathcal{F}_l(\mathbf{x}_l) + \mathbf{x}_l yl=Fl(xl)+xl

在反向传播中,我们需要计算每层的梯度。对于传统的深层网络,第 l l l 层的梯度计算如下:

∂ L ∂ x l = ∂ L ∂ y l ⋅ ∂ y l ∂ x l = ∂ L ∂ y l ⋅ ∂ F l ( x l ) ∂ x l \frac{\partial \mathcal{L}}{\partial \mathbf{x}_l} = \frac{\partial \mathcal{L}}{\partial \mathbf{y}_l} \cdot \frac{\partial \mathbf{y}_l}{\partial \mathbf{x}_l} = \frac{\partial \mathcal{L}}{\partial \mathbf{y}_l} \cdot \frac{\partial \mathcal{F}_l(\mathbf{x}_l)}{\partial \mathbf{x}_l} xlL=ylLxlyl=ylLxlFl(xl)

而在ResNet中,由于增加了跳跃连接,梯度的计算变为:

∂ L ∂ x l = ∂ L ∂ y l ⋅ ( ∂ F l ( x l ) ∂ x l + I ) \frac{\partial \mathcal{L}}{\partial \mathbf{x}_l} = \frac{\partial \mathcal{L}}{\partial \mathbf{y}_l} \cdot \left( \frac{\partial \mathcal{F}_l(\mathbf{x}_l)}{\partial \mathbf{x}_l} + \mathbf{I} \right) xlL=ylL(xlFl(xl)+I)

这里, I \mathbf{I} I 是单位矩阵,表示跳跃连接的梯度。

梯度分析

在ResNet中,由于跳跃连接的存在,梯度不仅传递了变换部分( ∂ F l ( x l ) ∂ x l \frac{\partial \mathcal{F}_l(\mathbf{x}_l)}{\partial \mathbf{x}_l} xlFl(xl) ),还传递了输入部分( I \mathbf{I} I ),这意味着即使在深层网络中,梯度也能有效地通过跳跃连接传递到前面的层,而不会完全依赖于 ∂ F l ( x l ) ∂ x l \frac{\partial \mathcal{F}_l(\mathbf{x}_l)}{\partial \mathbf{x}_l} xlFl(xl)

具体来说,如果 ∂ F l ( x l ) ∂ x l \frac{\partial \mathcal{F}_l(\mathbf{x}_l)}{\partial \mathbf{x}_l} xlFl(xl) 在深层网络中趋近于0(梯度消失)或趋近于无穷大(梯度爆炸),跳跃连接的单位矩阵 I \mathbf{I} I 确保了梯度至少能通过 I \mathbf{I} I 进行传递,缓解了梯度消失或爆炸的问题。

总结

  1. 跳跃连接的引入:在每个残差块中,除了对输入特征进行卷积、归一化和激活等操作外,还增加了一条直接传递输入特征到输出的路径。
  2. 公式中的体现:输出特征不仅包含变换后的特征,还加上了输入特征,即 y = F ( x ) + x \mathbf{y} = \mathcal{F}(\mathbf{x}) + \mathbf{x} y=F(x)+x
  3. 缓解梯度问题:跳跃连接确保了梯度在反向传播过程中,即使变换部分的梯度消失或爆炸,输入特征的梯度(\mathbf{I})也能直接传递,避免梯度完全消失或爆炸。

残差块的组成及功能

残差块是ResNet的基本单元,每个残差块中包含了两个主要部分:

  1. 变换路径:对输入进行卷积、批量归一化和激活操作。
  2. 跳跃连接(Shortcut Connection):直接将输入传递到输出,不进行任何变换,只是将输入特征原样添加到经过变换后的特征上。

详细组成

  1. 卷积层(Convolutional Layer):提取特征。
  2. 批量归一化层(Batch Normalization Layer):加速训练,稳定输入。
  3. ReLU激活函数(ReLU Activation Function):引入非线性,提高网络表达能力。
  4. 跳跃连接(Shortcut Connection):将输入直接加到输出上。

具体的操作流程如下:

  1. 输入特征 x \mathbf{x} x 通过卷积层和批量归一化层,得到变换后的特征 F ( x ) \mathcal{F}(\mathbf{x}) F(x)
  2. 变换后的特征 F ( x ) \mathcal{F}(\mathbf{x}) F(x) 与输入特征 x \mathbf{x} x 相加,得到输出特征 y \mathbf{y} y

y = F ( x , { W i } ) + x \mathbf{y} = \mathcal{F}(\mathbf{x}, \{W_i\}) + \mathbf{x} y=F(x,{Wi})+x

这里, x \mathbf{x} x 直接通过跳跃连接加到变换后的特征 F ( x ) \mathcal{F}(\mathbf{x}) F(x) 上。

  1. 输出特征 y \mathbf{y} y 再经过ReLU激活函数:

y = ReLU ( y ) \mathbf{y} = \text{ReLU}(\mathbf{y}) y=ReLU(y)

这种设计可以确保即使在深层网络中,梯度也能有效传播,避免梯度消失或爆炸。

ResNet的输出计算

在ResNet中,每一层的输出不仅仅取决于当前层的输入,还包括了前面层的输入,这种设计使得网络能够更有效地学习。

详细的数学推导
假设一个简单的ResNet包含L个残差块,每个残差块输出为 y l \mathbf{y}_l yl ,输入为 x l \mathbf{x}_l xl ,则有:

y l = F l ( x l ) + x l \mathbf{y}_l = \mathcal{F}_l(\mathbf{x}_l) + \mathbf{x}_l yl=Fl(xl)+xl

其中 F l ( x l ) \mathcal{F}_l(\mathbf{x}_l) Fl(xl) 表示第l个残差块中的变换函数(例如两层卷积和ReLU激活函数)。

整个网络的输入为 x 0 \mathbf{x}_0 x0 ,输出为 y L \mathbf{y}_L yL,即:

y L = F L ( y L − 1 ) + y L − 1 \mathbf{y}_L = \mathcal{F}_L(\mathbf{y}_{L-1}) + \mathbf{y}_{L-1} yL=FL(yL1)+yL1
y L − 1 = F L − 1 ( y L − 2 ) + y L − 2 \mathbf{y}_{L-1} = \mathcal{F}_{L-1}(\mathbf{y}_{L-2}) + \mathbf{y}_{L-2} yL1=FL1(yL2)+yL2
⋮ \vdots
y 1 = F 1 ( x 0 ) + x 0 \mathbf{y}_1 = \mathcal{F}_1(\mathbf{x}_0) + \mathbf{x}_0 y1=F1(x0)+x0

逐层递推,我们可以得到最终的输出:

y L = x 0 + ∑ l = 1 L F l ( x l ) \mathbf{y}_L = \mathbf{x}_0 + \sum_{l=1}^{L} \mathcal{F}_l(\mathbf{x}_l) yL=x0+l=1LFl(xl)

这种设计可以看作是对输入的逐层增强,每层不仅仅是对输入的简单变换,更是对前面所有层次特征的累积。

总结

  1. 残差网络结构:ResNet引入了残差块,每个残差块中有一条跳跃连接直接将输入加到输出上,这样即使网络很深,信息也能有效传递。
  2. 残差块的组成及功能:每个残差块由卷积、批量归一化、ReLU激活和跳跃连接组成,确保输入信息能够直接加到输出上。
  3. ResNet的输出计算:通过逐层递推,每一层的输出都是对输入和变换后特征的累积,使得网络能够更有效地学习深层特征。

具体实现:残差块的工作原理

  1. 输入特征(原始输入特征):假设输入特征是 x \mathbf{x} x
  2. 变换路径:输入特征 x \mathbf{x} x 经过一系列的卷积操作、批量归一化和激活函数后,得到变换后的特征 F ( x ) \mathcal{F}(\mathbf{x}) F(x)
  3. 跳跃连接:在变换路径之外,直接将输入特征 x \mathbf{x} x 加到变换后的特征 F ( x ) \mathcal{F}(\mathbf{x}) F(x)上,得到输出特征 y \mathbf{y} y

y = F ( x ) + x \mathbf{y} = \mathcal{F}(\mathbf{x}) + \mathbf{x} y=F(x)+x

这里, F ( x ) \mathcal{F}(\mathbf{x}) F(x) 是通过卷积和激活操作后的特征, x \mathbf{x} x 是原始输入特征。这样,每个残差块的输出就是“变换后的特征+原始输入特征”。

这篇关于解码 ResNet:残差块如何增强深度学习性能【数学推导】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1072512

相关文章

51单片机学习记录———定时器

文章目录 前言一、定时器介绍二、STC89C52定时器资源三、定时器框图四、定时器模式五、定时器相关寄存器六、定时器练习 前言 一个学习嵌入式的小白~ 有问题评论区或私信指出~ 提示:以下是本篇文章正文内容,下面案例可供参考 一、定时器介绍 定时器介绍:51单片机的定时器属于单片机的内部资源,其电路的连接和运转均在单片机内部完成。 定时器作用: 1.用于计数系统,可

问题:第一次世界大战的起止时间是 #其他#学习方法#微信

问题:第一次世界大战的起止时间是 A.1913 ~1918 年 B.1913 ~1918 年 C.1914 ~1918 年 D.1914 ~1919 年 参考答案如图所示

[word] word设置上标快捷键 #学习方法#其他#媒体

word设置上标快捷键 办公中,少不了使用word,这个是大家必备的软件,今天给大家分享word设置上标快捷键,希望在办公中能帮到您! 1、添加上标 在录入一些公式,或者是化学产品时,需要添加上标内容,按下快捷键Ctrl+shift++就能将需要的内容设置为上标符号。 word设置上标快捷键的方法就是以上内容了,需要的小伙伴都可以试一试呢!

AssetBundle学习笔记

AssetBundle是unity自定义的资源格式,通过调用引擎的资源打包接口对资源进行打包成.assetbundle格式的资源包。本文介绍了AssetBundle的生成,使用,加载,卸载以及Unity资源更新的一个基本步骤。 目录 1.定义: 2.AssetBundle的生成: 1)设置AssetBundle包的属性——通过编辑器界面 补充:分组策略 2)调用引擎接口API

Javascript高级程序设计(第四版)--学习记录之变量、内存

原始值与引用值 原始值:简单的数据即基础数据类型,按值访问。 引用值:由多个值构成的对象即复杂数据类型,按引用访问。 动态属性 对于引用值而言,可以随时添加、修改和删除其属性和方法。 let person = new Object();person.name = 'Jason';person.age = 42;console.log(person.name,person.age);//'J

大学湖北中医药大学法医学试题及答案,分享几个实用搜题和学习工具 #微信#学习方法#职场发展

今天分享拥有拍照搜题、文字搜题、语音搜题、多重搜题等搜题模式,可以快速查找问题解析,加深对题目答案的理解。 1.快练题 这是一个网站 找题的网站海量题库,在线搜题,快速刷题~为您提供百万优质题库,直接搜索题库名称,支持多种刷题模式:顺序练习、语音听题、本地搜题、顺序阅读、模拟考试、组卷考试、赶快下载吧! 2.彩虹搜题 这是个老公众号了 支持手写输入,截图搜题,详细步骤,解题必备

《offer来了》第二章学习笔记

1.集合 Java四种集合:List、Queue、Set和Map 1.1.List:可重复 有序的Collection ArrayList: 基于数组实现,增删慢,查询快,线程不安全 Vector: 基于数组实现,增删慢,查询快,线程安全 LinkedList: 基于双向链实现,增删快,查询慢,线程不安全 1.2.Queue:队列 ArrayBlockingQueue:

硬件基础知识——自学习梳理

计算机存储分为闪存和永久性存储。 硬盘(永久存储)主要分为机械磁盘和固态硬盘。 机械磁盘主要靠磁颗粒的正负极方向来存储0或1,且机械磁盘没有使用寿命。 固态硬盘就有使用寿命了,大概支持30w次的读写操作。 闪存使用的是电容进行存储,断电数据就没了。 器件之间传输bit数据在总线上是一个一个传输的,因为通过电压传输(电流不稳定),但是电压属于电势能,所以可以叠加互相干扰,这也就是硬盘,U盘

人工智能机器学习算法总结神经网络算法(前向及反向传播)

1.定义,意义和优缺点 定义: 神经网络算法是一种模仿人类大脑神经元之间连接方式的机器学习算法。通过多层神经元的组合和激活函数的非线性转换,神经网络能够学习数据的特征和模式,实现对复杂数据的建模和预测。(我们可以借助人类的神经元模型来更好的帮助我们理解该算法的本质,不过这里需要说明的是,虽然名字是神经网络,并且结构等等也是借鉴了神经网络,但其原型以及算法本质上还和生物层面的神经网络运行原理存在

Python应用开发——30天学习Streamlit Python包进行APP的构建(9)

st.area_chart 显示区域图。 这是围绕 st.altair_chart 的语法糖。主要区别在于该命令使用数据自身的列和指数来计算图表的 Altair 规格。因此,在许多 "只需绘制此图 "的情况下,该命令更易于使用,但可定制性较差。 如果 st.area_chart 无法正确猜测数据规格,请尝试使用 st.altair_chart 指定所需的图表。 Function signa