2024/06/18--代码随想录算法7/17|198.打家劫舍、213.打家劫舍II、337.打家劫舍III

2024-06-18 13:44

本文主要是介绍2024/06/18--代码随想录算法7/17|198.打家劫舍、213.打家劫舍II、337.打家劫舍III,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

198.打家劫舍

力扣链接
在这里插入图片描述

动态规划5步曲

  1. 确定dp数组(dp table)以及下标的含义:
    dp[i]: 下标i内(包括i)的房屋,最多可以偷到的金额为dp[i]
  2. 确定递推公式
    dp[i] = max(dp[i-1], dp[i-2]+nums[i])
  3. dp数组如何初始化 dp[0] = nums[0] dp[1]= max(nums[0], nums[1])
  4. 确定遍历顺序:dp[i] 是根据dp[i - 2] 和 dp[i - 1] 推导出来的,那么一定是从前到后遍历!

时间复杂度: O(n)空间复杂度: O(n)

一维DP
class Solution:def rob(self, nums: List[int]) -> int:if len(nums) == 0:  # 如果没有房屋,返回0return 0if len(nums) == 1:  # 如果只有一个房屋,返回其金额return nums[0]# 创建一个动态规划数组,用于存储最大金额dp = [0] * len(nums)dp[0] = nums[0]  # 将dp的第一个元素设置为第一个房屋的金额dp[1] = max(nums[0], nums[1])  # 将dp的第二个元素设置为第一二个房屋中的金额较大者# 遍历剩余的房屋for i in range(2, len(nums)):# 对于每个房屋,选择抢劫当前房屋和抢劫前一个房屋的最大金额dp[i] = max(dp[i - 2] + nums[i], dp[i - 1])return dp[-1]  # 返回最后一个房屋中可抢劫的最大金额
二维DP
class Solution:def rob(self, nums: List[int]) -> int:if not nums:  # 如果没有房屋,返回0return 0n = len(nums)dp = [[0, 0] for _ in range(n)]  # 创建二维动态规划数组,dp[i][0]表示不抢劫第i个房屋的最大金额,dp[i][1]表示抢劫第i个房屋的最大金额dp[0][1] = nums[0]  # 抢劫第一个房屋的最大金额为第一个房屋的金额for i in range(1, n):dp[i][0] = max(dp[i-1][0], dp[i-1][1])  # 不抢劫第i个房屋,最大金额为前一个房屋抢劫和不抢劫的最大值dp[i][1] = dp[i-1][0] + nums[i]  # 抢劫第i个房屋,最大金额为前一个房屋不抢劫的最大金额加上当前房屋的金额return max(dp[n-1][0], dp[n-1][1])  # 返回最后一个房屋中可抢劫的最大金额
【优化版】
class Solution:def rob(self, nums: List[int]) -> int:if not nums:  # 如果没有房屋,返回0return 0prev_max = 0  # 上一个房屋的最大金额curr_max = 0  # 当前房屋的最大金额for num in nums:temp = curr_max  # 临时变量保存当前房屋的最大金额curr_max = max(prev_max + num, curr_max)  # 更新当前房屋的最大金额prev_max = temp  # 更新上一个房屋的最大金额return curr_max  # 返回最后一个房屋中可抢劫的最大金额

213.打家劫舍II

力扣链接
在这里插入图片描述
与第一题的区别在于: 成环

对于一个数组,成环的话,主要有以下3种情况:

  1. 考虑不包含首尾元素
    在这里插入图片描述
  2. 考虑包含首尾元素,不包含尾元素
    在这里插入图片描述
  3. 考虑包含首尾元素,不包含首元素
    在这里插入图片描述
    例如情况三,考虑尾巴元素,但是不一定要选,所以他包含了情况1,讨论2和3就行
    时间复杂度: O(n) 空间复杂度: O(n)
class Solution:def rob(self, nums: List[int]) -> int:if len(nums) == 0:return 0if len(nums) == 1:return nums[0]result1 = self.robRange(nums, 0, len(nums) - 2)  # 情况二result2 = self.robRange(nums, 1, len(nums) - 1)  # 情况三return max(result1, result2)# 198.打家劫舍的逻辑def robRange(self, nums: List[int], start: int, end: int) -> int:if end == start:return nums[start]prev_max = nums[start]curr_max = max(nums[start], nums[start + 1])for i in range(start + 2, end + 1):temp = curr_maxcurr_max = max(prev_max + nums[i], curr_max)prev_max = tempreturn curr_max

2维DP

class Solution:def rob(self, nums: List[int]) -> int:if len(nums) < 3:return max(nums)# 情况二:不抢劫第一个房屋result1 = self.robRange(nums[:-1])# 情况三:不抢劫最后一个房屋result2 = self.robRange(nums[1:])return max(result1, result2)def robRange(self, nums):dp = [[0, 0] for _ in range(len(nums))]dp[0][1] = nums[0]for i in range(1, len(nums)):dp[i][0] = max(dp[i - 1])dp[i][1] = dp[i - 1][0] + nums[i]return max(dp[-1])

337.打家劫舍III

力扣链接
在这里插入图片描述
本题一定是要后序遍历,因为通过递归函数的返回值来做下一步计算。
与198.打家劫舍,213.打家劫舍II一样,关键是要讨论当前节点抢还是不抢。

如果抢了当前节点,两个孩子就不能动,如果没抢当前节点,就可以考虑抢左右孩子(注意这里说的是“考虑”)

动态规划其实就是使用状态转移容器来记录状态的变化,这里可以使用一个长度为2的数组,记录当前节点偷与不偷所得到的的最大金钱。
树形DP

  1. 确定递归函数的参数和返回值dp数组就是一个长度为2的数组!
  2. 确定终止条件【在遍历的过程中,如果遇到空节点的话,很明显,无论偷还是不偷都是0,所以就返回】
  3. 确定遍历顺序【后序遍历,要通过递归函数的返回值来做下一步计算。】
  4. 确定单层递归的逻辑

时间复杂度O(n),每个节点只遍历了一次
空间复杂度:O(log n),算上递推系统栈的空间

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:def rob(self, root: Optional[TreeNode]) -> int:# dp数组(dp table)以及下标的含义:# 1. 下标为 0 记录 **不偷该节点** 所得到的的最大金钱# 2. 下标为 1 记录 **偷该节点** 所得到的的最大金钱dp = self.traversal(root)return max(dp)# 要用后序遍历, 因为要通过递归函数的返回值来做下一步计算def traversal(self, node):# 递归终止条件,就是遇到了空节点,那肯定是不偷的if not node:return (0, 0)left = self.traversal(node.left)right = self.traversal(node.right)# 不偷当前节点, 偷子节点val_0 = max(left[0], left[1]) + max(right[0], right[1])# 偷当前节点, 不偷子节点val_1 = node.val + left[0] + right[0]return (val_0, val_1)

这篇关于2024/06/18--代码随想录算法7/17|198.打家劫舍、213.打家劫舍II、337.打家劫舍III的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1072156

相关文章

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

MySQL数据库函数之JSON_EXTRACT示例代码

《MySQL数据库函数之JSON_EXTRACT示例代码》:本文主要介绍MySQL数据库函数之JSON_EXTRACT的相关资料,JSON_EXTRACT()函数用于从JSON文档中提取值,支持对... 目录前言基本语法路径表达式示例示例 1: 提取简单值示例 2: 提取嵌套值示例 3: 提取数组中的值注意

CSS3中使用flex和grid实现等高元素布局的示例代码

《CSS3中使用flex和grid实现等高元素布局的示例代码》:本文主要介绍了使用CSS3中的Flexbox和Grid布局实现等高元素布局的方法,通过简单的两列实现、每行放置3列以及全部代码的展示,展示了这两种布局方式的实现细节和效果,详细内容请阅读本文,希望能对你有所帮助... 过往的实现方法是使用浮动加

JAVA调用Deepseek的api完成基本对话简单代码示例

《JAVA调用Deepseek的api完成基本对话简单代码示例》:本文主要介绍JAVA调用Deepseek的api完成基本对话的相关资料,文中详细讲解了如何获取DeepSeekAPI密钥、添加H... 获取API密钥首先,从DeepSeek平台获取API密钥,用于身份验证。添加HTTP客户端依赖使用Jav

Java实现状态模式的示例代码

《Java实现状态模式的示例代码》状态模式是一种行为型设计模式,允许对象根据其内部状态改变行为,本文主要介绍了Java实现状态模式的示例代码,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来... 目录一、简介1、定义2、状态模式的结构二、Java实现案例1、电灯开关状态案例2、番茄工作法状态案例

nginx-rtmp-module模块实现视频点播的示例代码

《nginx-rtmp-module模块实现视频点播的示例代码》本文主要介绍了nginx-rtmp-module模块实现视频点播,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习... 目录预置条件Nginx点播基本配置点播远程文件指定多个播放位置参考预置条件配置点播服务器 192.

CSS自定义浏览器滚动条样式完整代码

《CSS自定义浏览器滚动条样式完整代码》:本文主要介绍了如何使用CSS自定义浏览器滚动条的样式,包括隐藏滚动条的角落、设置滚动条的基本样式、轨道样式和滑块样式,并提供了完整的CSS代码示例,通过这些技巧,你可以为你的网站添加个性化的滚动条样式,从而提升用户体验,详细内容请阅读本文,希望能对你有所帮助...

深入解析Spring TransactionTemplate 高级用法(示例代码)

《深入解析SpringTransactionTemplate高级用法(示例代码)》TransactionTemplate是Spring框架中一个强大的工具,它允许开发者以编程方式控制事务,通过... 目录1. TransactionTemplate 的核心概念2. 核心接口和类3. TransactionT