随机梯度下降(SGD)

2024-06-18 05:20
文章标签 梯度 sgd 下降 随机

本文主要是介绍随机梯度下降(SGD),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

随机梯度下降(SGD)

随机梯度下降(Stochastic Gradient Descent,SGD)是一种用于优化机器学习模型的基本算法。SGD通过迭代地调整模型参数,使损失函数达到最小,从而优化模型性能。它是深度学习中最常用的优化算法之一,尤其适用于大规模数据集和高维度参数空间。

SGD的基本思想

SGD的核心思想是通过每次仅使用一个样本或一小部分样本(称为mini-batch)来估计梯度并更新模型参数。这种方式极大地减少了每次迭代的计算量,加速了训练过程。

SGD的工作流程

  1. 初始化参数

    • 随机初始化模型参数(如权重和偏置)。
  2. 随机选择样本

    • 从训练数据集中随机选择一个样本或一个mini-batch。
  3. 计算梯度

    • 计算当前样本或mini-batch对应的损失函数相对于模型参数的梯度。
  4. 更新参数

    • 根据梯度下降法的更新规则,调整模型参数。更新规则通常是:参数 = 参数 - 学习率 * 梯度。
  5. 重复步骤2-4

    • 迭代进行上述步骤,直到达到预定的迭代次数或损失函数收敛。

SGD的优点

  1. 计算效率高

    • 每次迭代只使用一个样本或一个mini-batch进行计算,减少了计算时间。
  2. 在线学习

    • SGD可以在数据逐步到达时进行学习,非常适合在线学习场景。
  3. 避免局部最优

    • 由于引入了随机性,SGD有助于跳出局部最优,找到全局最优解。

SGD的缺点

  1. 收敛速度慢

    • 相比批量梯度下降,SGD的收敛速度较慢,可能需要更多的迭代次数。
  2. 参数更新震荡

    • 由于每次更新只基于一个样本或一个mini-batch,参数更新过程中可能会产生较大的震荡。

改进版本

  1. 动量法(Momentum)

    • 通过引入动量项来加速收敛,并减小震荡。动量法在每次更新时,不仅考虑当前梯度,还考虑前几次梯度的加权平均,从而平滑更新路径。
  2. RMSProp

    • 动态调整学习率,适应不同参数的梯度大小。RMSProp通过对梯度平方的指数加权平均来调整学习率,使学习过程更稳健。
  3. AdaGrad

    • 自适应调整每个参数的学习率,适合处理稀疏数据。AdaGrad根据参数历史梯度的累积和来调整学习率,适应性强。
  4. Adam

    • 结合动量法和RMSProp的优点,自适应调整学习率,广泛应用于各种深度学习任务。

应用场景

  1. 深度学习

    • 在神经网络训练中,SGD及其改进版本被广泛应用于图像分类、目标检测、自然语言处理等任务。
  2. 线性模型

    • 在线性回归和逻辑回归等模型的训练中,SGD是一种常用的优化算法。
  3. 推荐系统

    • 在推荐系统中,SGD用于矩阵分解和协同过滤等算法的优化。

总结

SGD是一种高效、简单且强大的优化算法,通过随机选择样本进行梯度计算和参数更新,加速了大规模数据集上的模型训练。尽管存在收敛速度慢和参数更新震荡等问题,但通过动量法、RMSProp、AdaGrad和Adam等改进版本,这些问题得到了有效缓解和解决,使得SGD及其变种成为深度学习和其他机器学习任务中的主流优化方法。

这篇关于随机梯度下降(SGD)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1071403

相关文章

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

使用C#如何创建人名或其他物体随机分组

《使用C#如何创建人名或其他物体随机分组》文章描述了一个随机分配人员到多个团队的代码示例,包括将人员列表随机化并根据组数分配到不同组,最后按组号排序显示结果... 目录C#创建人名或其他物体随机分组此示例使用以下代码将人员分配到组代码首先将lstPeople ListBox总结C#创建人名或其他物体随机分组

✨机器学习笔记(二)—— 线性回归、代价函数、梯度下降

1️⃣线性回归(linear regression) f w , b ( x ) = w x + b f_{w,b}(x) = wx + b fw,b​(x)=wx+b 🎈A linear regression model predicting house prices: 如图是机器学习通过监督学习运用线性回归模型来预测房价的例子,当房屋大小为1250 f e e t 2 feet^

AI学习指南深度学习篇-带动量的随机梯度下降法的基本原理

AI学习指南深度学习篇——带动量的随机梯度下降法的基本原理 引言 在深度学习中,优化算法被广泛应用于训练神经网络模型。随机梯度下降法(SGD)是最常用的优化算法之一,但单独使用SGD在收敛速度和稳定性方面存在一些问题。为了应对这些挑战,动量法应运而生。本文将详细介绍动量法的原理,包括动量的概念、指数加权移动平均、参数更新等内容,最后通过实际示例展示动量如何帮助SGD在参数更新过程中平稳地前进。

AI学习指南深度学习篇-带动量的随机梯度下降法简介

AI学习指南深度学习篇 - 带动量的随机梯度下降法简介 引言 在深度学习的广阔领域中,优化算法扮演着至关重要的角色。它们不仅决定了模型训练的效率,还直接影响到模型的最终表现之一。随着神经网络模型的不断深化和复杂化,传统的优化算法在许多领域逐渐暴露出其不足之处。带动量的随机梯度下降法(Momentum SGD)应运而生,并被广泛应用于各类深度学习模型中。 在本篇文章中,我们将深入探讨带动量的随

HDD 顺序和随机文件拷贝和存储优化策略

对于机械硬盘(HDD),顺序拷贝和随机拷贝涉及到磁头的移动方式和数据的读取/写入模式。理解这些概念对于优化硬盘性能和管理文件操作非常重要。 1. 顺序拷贝 定义: 顺序拷贝指的是数据从硬盘的一个位置到另一个位置按顺序连续读取和写入。这意味着数据在硬盘上的位置是线性的,没有跳跃或回溯。 特点: 磁头移动最小化:由于数据是连续的,磁头在读取或写入数据时只需要在磁盘的一个方向上移动,减少了寻道时

什么是GPT-3的自回归架构?为什么GPT-3无需梯度更新和微调

文章目录 知识回顾GPT-3的自回归架构何为自回归架构为什么架构会影响任务表现自回归架构的局限性与双向模型的对比小结 为何无需梯度更新和微调为什么不需要怎么做到不需要 🍃作者介绍:双非本科大四网络工程专业在读,阿里云专家博主,专注于Java领域学习,擅长web应用开发,目前开始人工智能领域相关知识的学习 🦅个人主页:@逐梦苍穹 📕所属专栏:人工智能 🌻gitee地址:x

算法:将数组随机打乱顺序,生成一个新的数组

一、思路 核心:缩小原数组的可随机取数范围 1、创建一个与原数组长度相同的新数组; 2、从原数组的有效的可取数范围 (不断缩小) 中随机取出一个数据,添加进新的数组; 3、将取出的随机数与原数组的最后一个数据进行置换; 4、重复步骤2和3。 二、代码 public class ArrayRandomTest {//将数组随机打乱顺序,生成一个新的数组public static int