【NLP项目-01】手把手教你基于TF-IDF提取向量+贝叶斯或者随机森林进行文本分类

本文主要是介绍【NLP项目-01】手把手教你基于TF-IDF提取向量+贝叶斯或者随机森林进行文本分类,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【NLP项目-01】手把手教你基于TF-IDF提取向量+贝叶斯或者随机森林进行文本分类
 
本次修炼方法请往下查看
在这里插入图片描述

🌈 欢迎莅临我的个人主页 👈这里是我工作、学习、实践 IT领域、真诚分享 踩坑集合,智慧小天地!
🎇 相关内容文档获取 微信公众号
🎇 相关内容视频讲解 B站

🎓 博主简介:AI算法驯化师,混迹多个大厂搜索、推荐、广告、数据分析、数据挖掘岗位 个人申请专利40+,熟练掌握机器、深度学习等各类应用算法原理和项目实战经验

🔧 技术专长: 在机器学习、搜索、广告、推荐、CV、NLP、多模态、数据分析等算法相关领域有丰富的项目实战经验。已累计为求职、科研、学习等需求提供近千次有偿|无偿定制化服务,助力多位小伙伴在学习、求职、工作上少走弯路、提高效率,近一年好评率100%

📝 博客风采: 积极分享关于机器学习、深度学习、数据分析、NLP、PyTorch、Python、Linux、工作、项目总结相关的实用内容。

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

🌵文章目录🌵

  • 🎯 1. 基本介绍
      • 1.1 TF-IDF介绍
  • 💡 2. 使用方法
      • 2.1 英文数据准备
      • 2.2 项目数据介绍
      • 2.3 项目数据处理
      • 2.4 文本向量化
      • 2.5 文本分类
  • 🔍 3. 高级用法
  • 🔍 4. 注意事项
  • 🔧 5. 总结

下滑查看解决方法

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

🎯 1. 基本介绍

  文本分类是自然语言处理(NLP)中的一项基础任务,其目标是将文本数据自动归类到预定义的类别中。TF-IDF(Term Frequency-Inverse Document Frequency)是一种常用的文本向量化方法,它能够衡量一个词语对于一个文档集或一个语料库中的其中一份文档的重要性。

1.1 TF-IDF介绍

  • 作用:用来计算一个词在文档中的权重大小,通常用来计算词权重方法之一
  • TF:一个词在文档中的频次
  • IDF:逆文档频率,一个关键词w在dw个文档中出现的次数
  • TF-IDF的计算公式如下所示:
    T F i , j = n i , j ∑ k n k , j TF_{i,j}=\frac{n_{i,j}}{\sum_k n_{k,j}} TFi,j=knk,jni,j , I D F i = l o g ∣ D ∣ ∣ 1 + j : t i ∈ d j ∣ IDF_i=log\frac{|D|}{|{1+j:t_i\in d_j}|} IDFi=log1+j:tidjD
    T F − I D F i , j = t f i , j ∗ i d f i TF-IDF_{i,j}=tf_{i,j}*idf_i TFIDFi,j=tfi,jidfi

💡 2. 使用方法

2.1 英文数据准备

  使用tf-idf进行文本向量化时,我们需要注意中文和英文的处理方法不一致的问题,对于中文的文本数据需要对其进行切词,对于英文只需要对其进行判断即可。
  对于英文数据的处理的代码示例如下所示:

from sklearn.feature_extraction.text import TfidfVectorizer# 假设我们有以下文本数据
texts = ["The sky is blue.","The sun is bright.","The sun in the sky is bright.","We can see the shining sun, the bright sun."
]# 初始化TF-IDF向量化器
vectorizer = TfidfVectorizer(stop_words='english')
tfidf_matrix = vectorizer.fit_transform(texts)# 查看向量化结果
print(tfidf_matrix.toarray())[[0.78528828 0.         0.         0.6191303  0.        ][0.         0.70710678 0.         0.         0.70710678][0.         0.53256952 0.         0.65782931 0.53256952][0.         0.36626037 0.57381765 0.         0.73252075]]

2.2 项目数据介绍

  本项目中的数据为中文的历史上用户的评价中文数据,具体的数据格式为:
在这里插入图片描述

  其中text为输入的文本,flag为文本的标签

2.3 项目数据处理

  通过jieba分词器对中文数据进行切词处理,具体的代码如下所示:

data['cus_comment']= data['text'].apply(lambda x: ' '.join(list(jieba.cut(x))))category_mapping = {"体育": 0,"娱乐": 1,"房产": 2,"教育": 3, "时政": 4,"游戏": 5,"社会": 6, "科技": 7,"股票": 8, "财经": 9
}#特征值转换
data['target'] = data['flag'].map(category_mapping)
data.head() text	flag	cus_comment	target
0	中华女子学院:本科层次仅1专业招男生	教育	中华 女子 学院 : 本科 层次 仅 1 专业 招 男生	3
1	两天价网站背后重重迷雾:做个网站究竟要多少钱	科技	两天 价 网站 背后 重重 迷雾 : 做个 网站 究竟 要 多少 钱	7
25环海棠公社230-2902居准现房98折优惠	房产	东 5 环 海棠 公社 230 - 2902 居 准现房 98 折 优惠	2
3	卡佩罗:告诉你德国脚生猛的原因 不希望英德战踢点球	体育	卡佩罗 : 告诉 你 德国 脚 生猛 的 原因 不 希望 英德 战 踢 点球	0
4	82岁老太为学生做饭扫地44年获授港大荣誉院士	社会	82 岁 老太 为 学生 做饭 扫地 44 年 获授 港大 荣誉 院士	6

2.4 文本向量化

  为了使得特征不向量穿越,这个时候需要先对其进行训练数据、测试数据的划分,具体的代码如下所示:

#切分测试集、训练集
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(data['cus_comment'], data['target'], random_state=3, test_size=0.25)#引入停用词
infile = open("stop_word.txt",encoding='utf-8')
stopwords_lst = infile.readlines()
stopwords = [x.strip() for x in stopwords_lst]#中文分词
def fenci(train_data):words_df = train_data.apply(lambda x:' '.join(jieba.cut(x)))return words_dfx_train[:5]195436               评论 : 买房 别 拿 通货膨胀 做 理由
133504                       诺安 旗下 两 基金 分红
193602        《 恶魔城 》 系列 新作 公布   支持 6 人 游戏
29919      组图 : 蔡健雅 许茹芸 苏慧伦 齐聚   合开 演唱会 有谱
21642     上海 2010 年 高考 成绩 626 日晚 8 点 可查
Name: cus_comment, dtype: object

  中文文本特征处理,需要进行中文分词,jieba分词库简单好用。接下来需要过滤停用词,最后就要进行文本转向量,有词库表示法、TF-IDF、word2vec等,这里我们使用sklearn库的TF-IDF工具进行文本特征提取。

#使用TF-IDF进行文本转向量处理
from sklearn.feature_extraction.text import TfidfVectorizer
tv = TfidfVectorizer(stop_words=stopwords, max_features=3000, ngram_range=(1,2))
tv.fit(x_train)tv.transform(x_train)
<150000x3000 sparse matrix of type '<class 'numpy.float64'>'with 510413 stored elements in Compressed Sparse Row format>

  从上可以得出,将文本吹成了3000维的向量表示

2.5 文本分类

  特征和标签已经准备好了,接下来就是建模了。这里我们使用文本分类的经典算法朴素贝叶斯算法,而且朴素贝叶斯算法的计算量较少,具体的代码如下所示:

#计算分类效果的准确率
from sklearn.naive_bayes import MultinomialNB
import numpy as np
from sklearn.metrics import roc_auc_score, f1_score, classification_report
classifier = MultinomialNB()
classifier.fit(tv.transform(x_train), y_train)
print(classification_report(y_test,  [np.argmax(i) for i in classifier.predict_proba(tv.transform(x_test))]))precision    recall  f1-score   support0       0.68      0.87      0.76      48621       0.76      0.71      0.73      50362       0.89      0.81      0.85      49673       0.87      0.90      0.89      50684       0.78      0.78      0.78      50725       0.83      0.79      0.81      49076       0.77      0.80      0.79      49537       0.81      0.70      0.75      50938       0.72      0.73      0.73      50639       0.80      0.79      0.80      4979accuracy                           0.79     50000macro avg       0.79      0.79      0.79     50000
weighted avg       0.79      0.79      0.79     50000

🔍 3. 高级用法

  使用tfidf进行机器学习分类分类是,特征的提取向量决定了最终模型的效果上线,对于sklearn中的tfidf算法,文本特征向量表达效果的好坏取决于滑动窗口的大小,具体的参数如下所示:

  • tv = TfidfVectorizer(stop_words=stopwords, max_features=3000, ngram_range=(1,2))

  起绝对性因素的两个参数为max_feature得大小,但是ngram_range参数的区间如果变大的话可以使得整个文本提取的表达能力达到最优的状态。

🔍 4. 注意事项

  • 数据清洗:确保文本数据是干净的,去除无关字符和噪声,如HTML标签、特殊符号等。
  • 文本标准化:将所有文本转换为统一的小写形式,以避免大小写引起的差异。
  • 停用词过滤:去除常见的停用词,如“the”,“is”,“in”等,因为这些词通常对文本的语义贡献不大。
  • 词干提取或词形还原:根据需要选择是否进行词干提取或词形还原,以减少词形变化带来的影响。
  • 特征选择:TF-IDF可能会生成大量的特征,考虑使用特征选择技术来减少特征维度,提高模型性能。
  • 参数调优:对于贝叶斯和随机森林分类器,需要调整模型参数以获得最佳性能,如随机森林中的树的数量和深度。
  • 避免数据泄露:在划分训练集和测试集时,确保训练集和测试集之间没有信息泄露。
  • 模型评估:使用适当的评估指标,如准确率、召回率、F1分数等,来全面评估模型性能。
  • 交叉验证:使用交叉验证来评估模型的稳定性和泛化能力。
  • 类别不平衡:如果数据集中的类别分布不均匀,考虑使用重采样技术或调整分类阈值。

🔧 5. 总结

  在本教程中,我们学习了如何使用TF-IDF方法提取文本特征,并使用贝叶斯或随机森林分类器进行文本分类。预处理和特征提取是文本分类任务中的关键步骤,选择合适的模型和评估方法对于获得良好性能至关重要。

这篇关于【NLP项目-01】手把手教你基于TF-IDF提取向量+贝叶斯或者随机森林进行文本分类的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1071343

相关文章

这15个Vue指令,让你的项目开发爽到爆

1. V-Hotkey 仓库地址: github.com/Dafrok/v-ho… Demo: 戳这里 https://dafrok.github.io/v-hotkey 安装: npm install --save v-hotkey 这个指令可以给组件绑定一个或多个快捷键。你想要通过按下 Escape 键后隐藏某个组件,按住 Control 和回车键再显示它吗?小菜一碟: <template

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

如何用Docker运行Django项目

本章教程,介绍如何用Docker创建一个Django,并运行能够访问。 一、拉取镜像 这里我们使用python3.11版本的docker镜像 docker pull python:3.11 二、运行容器 这里我们将容器内部的8080端口,映射到宿主机的80端口上。 docker run -itd --name python311 -p

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

hdu 2602 and poj 3624(01背包)

01背包的模板题。 hdu2602代码: #include<stdio.h>#include<string.h>const int MaxN = 1001;int max(int a, int b){return a > b ? a : b;}int w[MaxN];int v[MaxN];int dp[MaxN];int main(){int T;int N, V;s

在cscode中通过maven创建java项目

在cscode中创建java项目 可以通过博客完成maven的导入 建立maven项目 使用快捷键 Ctrl + Shift + P 建立一个 Maven 项目 1 Ctrl + Shift + P 打开输入框2 输入 "> java create"3 选择 maven4 选择 No Archetype5 输入 域名6 输入项目名称7 建立一个文件目录存放项目,文件名一般为项目名8 确定

业务中14个需要进行A/B测试的时刻[信息图]

在本指南中,我们将全面了解有关 A/B测试 的所有内容。 我们将介绍不同类型的A/B测试,如何有效地规划和启动测试,如何评估测试是否成功,您应该关注哪些指标,多年来我们发现的常见错误等等。 什么是A/B测试? A/B测试(有时称为“分割测试”)是一种实验类型,其中您创建两种或多种内容变体——如登录页面、电子邮件或广告——并将它们显示给不同的受众群体,以查看哪一种效果最好。 本质上,A/B测

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

Vue3项目开发——新闻发布管理系统(六)

文章目录 八、首页设计开发1、页面设计2、登录访问拦截实现3、用户基本信息显示①封装用户基本信息获取接口②用户基本信息存储③用户基本信息调用④用户基本信息动态渲染 4、退出功能实现①注册点击事件②添加退出功能③数据清理 5、代码下载 八、首页设计开发 登录成功后,系统就进入了首页。接下来,也就进行首页的开发了。 1、页面设计 系统页面主要分为三部分,左侧为系统的菜单栏,右侧