caffe中BatchNorm层和Scale层实现批量归一化(batch-normalization)注意事项

本文主要是介绍caffe中BatchNorm层和Scale层实现批量归一化(batch-normalization)注意事项,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

caffe中实现批量归一化(batch-normalization)需要借助两个层:BatchNorm 和 Scale 
BatchNorm实现的是归一化 
Scale实现的是平移和缩放 
在实现的时候要注意的是由于Scale需要实现平移功能,所以要把bias_term项设为true 
另外,实现BatchNorm的时候需要注意一下参数use_global_stats,在训练的时候设为false,在测试的时候设为true 
use_global_stats = false 时采用滑动平均计算新的均值和方差 
use_global_stats = true 时会强制使用模型中存储的BatchNorm层均值与方差参数 


具体训练实现过程为(conv-batchnorm-scale-relu):
 

layer {bottom: "data"top: "conv1_1"name: "conv1_1"type: "Convolution"param {lr_mult: 1decay_mult: 1}param {lr_mult: 2decay_mult: 0}convolution_param {weight_filler {type: "xavier"}bias_filler {type: "constant"}num_output: 64pad: 1kernel_size: 3}
}
layer {bottom: "conv1_1"top: "conv1_1"name: "bn_conv1_1"type: "BatchNorm"param {lr_mult: 0decay_mult: 0}param {lr_mult: 0decay_mult: 0}param {lr_mult: 0decay_mult: 0}batch_norm_param {use_global_stats: false}
}
layer {bottom: "conv1_1"top: "conv1_1"name: "scale_conv1_1"type: "Scale"param {lr_mult: 0.1decay_mult: 0}param {lr_mult: 0.1decay_mult: 0}scale_param {bias_term: true}
}
layer {bottom: "conv1_1"top: "conv1_1"name: "relu1_1"type: "ReLU"
}

具体测试实现过程为(conv-batchnorm-scale-relu)(把use_global_stats由false设为true):

layer {bottom: "data"top: "conv1_1"name: "conv1_1"type: "Convolution"param {lr_mult: 1decay_mult: 1}param {lr_mult: 2decay_mult: 0}convolution_param {weight_filler {type: "xavier"}bias_filler {type: "constant"}num_output: 64pad: 1kernel_size: 3}
}
layer {bottom: "conv1_1"top: "conv1_1"name: "bn_conv1_1"type: "BatchNorm"param {lr_mult: 0decay_mult: 0}param {lr_mult: 0decay_mult: 0}param {lr_mult: 0decay_mult: 0}batch_norm_param {use_global_stats: true}
}
layer {bottom: "conv1_1"top: "conv1_1"name: "scale_conv1_1"type: "Scale"param {lr_mult: 0.1decay_mult: 0}param {lr_mult: 0.1decay_mult: 0}scale_param {bias_term: true}
}
layer {bottom: "conv1_1"top: "conv1_1"name: "relu1_1"type: "ReLU"
}

其实也没必要这么麻烦,因为在BathNorm层的源码中设定了如果use_global_stats缺省,那么在训练时为false,测试时为true,源代码为(caffe/src/caffe/layers/batch_norm_layer.cpp)第14行:

use_global_stats_ = this->phase_ == TEST;


在测试时为1,训练时为0,这样的话我们在代码里就不用设定use_global_stats的值了,这样上面的代码我们可以简化为(训练和测试时都一样):

layer {bottom: "data"top: "conv1_1"name: "conv1_1"type: "Convolution"param {lr_mult: 1decay_mult: 1}param {lr_mult: 2decay_mult: 0}convolution_param {weight_filler {type: "xavier"}bias_filler {type: "constant"}num_output: 64pad: 1kernel_size: 3}
}
layer {bottom: "conv1_1"top: "conv1_1"name: "bn_conv1_1"type: "BatchNorm"param {lr_mult: 0decay_mult: 0}param {lr_mult: 0decay_mult: 0}param {lr_mult: 0decay_mult: 0}
}
layer {bottom: "conv1_1"top: "conv1_1"name: "scale_conv1_1"type: "Scale"param {lr_mult: 0.1decay_mult: 0}param {lr_mult: 0.1decay_mult: 0}scale_param {bias_term: true}
}
layer {bottom: "conv1_1"top: "conv1_1"name: "relu1_1"type: "ReLU"
}

 

备注:

可以看到这一层是batchnormal层,其中的参数设置,三个param中的lr_mult和decay_mult都设置为0

原因如下:

caffe中的batchnormal层中有三个参数(具体代表什么自行去caffe源码中看吧:均值、方差和滑动系数),训练时这三个参数是通过当前的数据计算得到的,并且不通过反向传播更新,因此必须将lr_mult和decay_mult都设置为0,因为caffe中这两个参数缺省值是默认为1;如果为1,则会通过反向传播更新该层的参数,这显然是错误的做法。

此外,对于参数use_global_stats:如果为真,则使用保存的均值和方差,否则采用滑动平均计算新的均值和方差。该参数缺省的时候,如果是测试阶段则等价为真,如果是训练阶段则等价为假。

moving_average_fraction:滑动平均的衰减系数,默认为0.999

eps:分母附加值,防止除以方差时出现除0操作,默认为1e-5(不同框架采用的默认值不一样)
 

更重要的一点:由于BN层中会做归一化处理,因此BN层前的那个卷积层应当将bias关闭,因为BN的操作会做一个减去均值的操作,因此卷积层有没有bias都会被这个减法操作去除掉,所以这时候bias不起作用,因此将其关闭可以减少参数量且不影响模型准确率。

 

convolution_param {num_output: 32bias_term: falsepad: 1kernel_size: 3stride: 2weight_filler {type: "msra"}
}

同时,由于caffe中,Scale层不需要对两个参数正则化,所以设置如下:

param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}

 

这篇关于caffe中BatchNorm层和Scale层实现批量归一化(batch-normalization)注意事项的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1069887

相关文章

C#借助Spire.XLS for .NET实现在Excel中添加文档属性

《C#借助Spire.XLSfor.NET实现在Excel中添加文档属性》在日常的数据处理和项目管理中,Excel文档扮演着举足轻重的角色,本文将深入探讨如何在C#中借助强大的第三方库Spire.... 目录为什么需要程序化添加Excel文档属性使用Spire.XLS for .NET库实现文档属性管理Sp

Python+FFmpeg实现视频自动化处理的完整指南

《Python+FFmpeg实现视频自动化处理的完整指南》本文总结了一套在Python中使用subprocess.run调用FFmpeg进行视频自动化处理的解决方案,涵盖了跨平台硬件加速、中间素材处理... 目录一、 跨平台硬件加速:统一接口设计1. 核心映射逻辑2. python 实现代码二、 中间素材处

Java数组动态扩容的实现示例

《Java数组动态扩容的实现示例》本文主要介绍了Java数组动态扩容的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1 问题2 方法3 结语1 问题实现动态的给数组添加元素效果,实现对数组扩容,原始数组使用静态分配

Python实现快速扫描目标主机的开放端口和服务

《Python实现快速扫描目标主机的开放端口和服务》这篇文章主要为大家详细介绍了如何使用Python编写一个功能强大的端口扫描器脚本,实现快速扫描目标主机的开放端口和服务,感兴趣的小伙伴可以了解下... 目录功能介绍场景应用1. 网络安全审计2. 系统管理维护3. 网络故障排查4. 合规性检查报错处理1.

Python轻松实现Word到Markdown的转换

《Python轻松实现Word到Markdown的转换》在文档管理、内容发布等场景中,将Word转换为Markdown格式是常见需求,本文将介绍如何使用FreeSpire.DocforPython实现... 目录一、工具简介二、核心转换实现1. 基础单文件转换2. 批量转换Word文件三、工具特性分析优点局

Springboot3统一返回类设计全过程(从问题到实现)

《Springboot3统一返回类设计全过程(从问题到实现)》文章介绍了如何在SpringBoot3中设计一个统一返回类,以实现前后端接口返回格式的一致性,该类包含状态码、描述信息、业务数据和时间戳,... 目录Spring Boot 3 统一返回类设计:从问题到实现一、核心需求:统一返回类要解决什么问题?

Java使用Spire.Doc for Java实现Word自动化插入图片

《Java使用Spire.DocforJava实现Word自动化插入图片》在日常工作中,Word文档是不可或缺的工具,而图片作为信息传达的重要载体,其在文档中的插入与布局显得尤为关键,下面我们就来... 目录1. Spire.Doc for Java库介绍与安装2. 使用特定的环绕方式插入图片3. 在指定位

Java使用Spire.Barcode for Java实现条形码生成与识别

《Java使用Spire.BarcodeforJava实现条形码生成与识别》在现代商业和技术领域,条形码无处不在,本教程将引导您深入了解如何在您的Java项目中利用Spire.Barcodefor... 目录1. Spire.Barcode for Java 简介与环境配置2. 使用 Spire.Barco

Java利用Spire.Doc for Java实现在模板的基础上创建Word文档

《Java利用Spire.DocforJava实现在模板的基础上创建Word文档》在日常开发中,我们经常需要根据特定数据动态生成Word文档,本文将深入探讨如何利用强大的Java库Spire.Do... 目录1. Spire.Doc for Java 库介绍与安装特点与优势Maven 依赖配置2. 通过替换

Android使用java实现网络连通性检查详解

《Android使用java实现网络连通性检查详解》这篇文章主要为大家详细介绍了Android使用java实现网络连通性检查的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录NetCheck.Java(可直接拷贝)使用示例(Activity/Fragment 内)权限要求