【自动驾驶】26.【很清晰】旋转矩阵,欧拉角,四元数,旋转向量和齐次变换矩阵

本文主要是介绍【自动驾驶】26.【很清晰】旋转矩阵,欧拉角,四元数,旋转向量和齐次变换矩阵,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原文链接:https://blog.csdn.net/varyshare/article/details/91899049
前言
这几个名词都是用来描述一个物体的位置和姿态的。它们之间可以相互转化,而且各有各的优点与缺点。我先把这几个名词之间的联系理清楚,然后再解释他们各自适合的领域以及为何需要他们。

1.旋转矩阵

旋转矩阵的初衷就是人们希望给定一个向量x,然后我对它旋转,能直接通过矩阵乘法的形式得到旋转后的向量坐标。也就是说y=Ax。这个方便计算机计算,因此旋转矩阵常用于编程。旋转矩阵是一个正交矩阵:
在这里插入图片描述
而且行列式是1。

2.欧拉角

既然有了旋转矩阵,那么为何还要欧拉角呢?
这是因为我给你一个旋转矩阵,人看不懂它到底转了多少角度啊。计算机很容易算出来,但是对人来说非常困难。比如飞机驾驶员你让他以旋转矩阵的形式给飞机下指令,那人家不得疯了。而欧拉角那就非常直观,欧拉角就是我飞机头抬头多少(俯仰角pitch),向左拐还是向右拐(偏航角yaw),以及滚筒动作的角度(滚转角roll)。因此欧拉角一般是方便用户操作,或者程序员检查运算结果是否正确。

3.四元数

然后有了欧拉角为何还要四元数呢?
因为欧拉角有问题,即万向锁问题可以看这个解释万向锁视频。
欧拉角的意思是说旋转可以分解为绕机身,机翼,垂直机身三个轴旋转。注意了是依次旋转,每次旋转后的旋转轴姿态已经变化。看下图,比如你先绕机翼那个轴转90度,然后你会发现原先(第一幅图)的滚转角(即绕原先的机身转)与现在的偏航角(绕垂直机身的那个轴)重合了。也就是说滚转这个方向等与偏航了,两个自由度合并成一个了。这样一个麻烦就是如果一个给定旋转矩阵可能会计算出多个欧拉角。于是乎,数学家就用四元数来代替欧拉角。
在这里插入图片描述 在这里插入图片描述

4.旋转向量

旋转向量其实和欧拉角类似也会存在万向锁的,任何只用三个变量来描述姿态的方法都会产生万向锁。旋转向量就是【方向与旋转轴相同,模为旋转角度】的一个向量。之所以会用旋转向量是因为旋转矩阵用9个元素来描述三维的旋转,太浪费了。所以想用三个元素的向量来描述三维运动,这个向量就是旋转向量。

5.齐次变换矩阵

齐次变换矩阵就是既包含旋转又包含平移的变换矩阵(它是4x4),旋转矩阵R只包含旋转(它是3x3),齐次变换矩阵的左上角是旋转矩阵R,右侧那列是平移量T
在这里插入图片描述
在这里插入图片描述


这几个名词是可以相互转换的。我就不讲公式,我只讲转换的方法。

旋转矩阵变换到欧拉角、旋转向量
旋转矩阵它本质是把极坐标写成矩阵的形式,它可以计算出旋转的角度然后将角度分解得到欧拉角。旋转矩阵也可以转换到旋转向量,旋转向量的方向 是 旋转矩阵特征值为1的那个特征向量

为什么呢?因为旋转向量的方向是旋转轴重合也就是说这个向量绕旋转轴怎么旋转都不变,即R*n=n,而这刚好是特征值为1时候的表达式。前面提到了旋转的角度是旋转向量的模。然后旋转的角度是根据rodrigues公式两边求trace(对角线元素求和)可以算出旋转的角度。

旋转向量变换到旋转矩阵、四元数
旋转向量变换到旋转矩阵是利用rodrigues公式.而变换到四元数是直接可以等价变换。接下来讲讲旋转向量怎么变换到四元数。
假设旋转向量的方向向量是 [ n x , n y , n z ] \color{red}[ n_x , n_y , n_z ] [nx,ny,nz],它的模是θ,那么变换到的四元数为

在这里插入图片描述
同样四元数也很容易可以变换到旋转向量。

这篇关于【自动驾驶】26.【很清晰】旋转矩阵,欧拉角,四元数,旋转向量和齐次变换矩阵的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1067572

相关文章

SpringBoot+Docker+Graylog 如何让错误自动报警

《SpringBoot+Docker+Graylog如何让错误自动报警》SpringBoot默认使用SLF4J与Logback,支持多日志级别和配置方式,可输出到控制台、文件及远程服务器,集成ELK... 目录01 Spring Boot 默认日志框架解析02 Spring Boot 日志级别详解03 Sp

浏览器插件cursor实现自动注册、续杯的详细过程

《浏览器插件cursor实现自动注册、续杯的详细过程》Cursor简易注册助手脚本通过自动化邮箱填写和验证码获取流程,大大简化了Cursor的注册过程,它不仅提高了注册效率,还通过友好的用户界面和详细... 目录前言功能概述使用方法安装脚本使用流程邮箱输入页面验证码页面实战演示技术实现核心功能实现1. 随机

HTML5实现的移动端购物车自动结算功能示例代码

《HTML5实现的移动端购物车自动结算功能示例代码》本文介绍HTML5实现移动端购物车自动结算,通过WebStorage、事件监听、DOM操作等技术,确保实时更新与数据同步,优化性能及无障碍性,提升用... 目录1. 移动端购物车自动结算概述2. 数据存储与状态保存机制2.1 浏览器端的数据存储方式2.1.

基于 HTML5 Canvas 实现图片旋转与下载功能(完整代码展示)

《基于HTML5Canvas实现图片旋转与下载功能(完整代码展示)》本文将深入剖析一段基于HTML5Canvas的代码,该代码实现了图片的旋转(90度和180度)以及旋转后图片的下载... 目录一、引言二、html 结构分析三、css 样式分析四、JavaScript 功能实现一、引言在 Web 开发中,

一文详解MySQL如何设置自动备份任务

《一文详解MySQL如何设置自动备份任务》设置自动备份任务可以确保你的数据库定期备份,防止数据丢失,下面我们就来详细介绍一下如何使用Bash脚本和Cron任务在Linux系统上设置MySQL数据库的自... 目录1. 编写备份脚本1.1 创建并编辑备份脚本1.2 给予脚本执行权限2. 设置 Cron 任务2

苹果macOS 26 Tahoe主题功能大升级:可定制图标/高亮文本/文件夹颜色

《苹果macOS26Tahoe主题功能大升级:可定制图标/高亮文本/文件夹颜色》在整体系统设计方面,macOS26采用了全新的玻璃质感视觉风格,应用于Dock栏、应用图标以及桌面小部件等多个界面... 科技媒体 MACRumors 昨日(6 月 13 日)发布博文,报道称在 macOS 26 Tahoe 中

MyBatis Plus 中 update_time 字段自动填充失效的原因分析及解决方案(最新整理)

《MyBatisPlus中update_time字段自动填充失效的原因分析及解决方案(最新整理)》在使用MyBatisPlus时,通常我们会在数据库表中设置create_time和update... 目录前言一、问题现象二、原因分析三、总结:常见原因与解决方法对照表四、推荐写法前言在使用 MyBATis

Python使用smtplib库开发一个邮件自动发送工具

《Python使用smtplib库开发一个邮件自动发送工具》在现代软件开发中,自动化邮件发送是一个非常实用的功能,无论是系统通知、营销邮件、还是日常工作报告,Python的smtplib库都能帮助我们... 目录代码实现与知识点解析1. 导入必要的库2. 配置邮件服务器参数3. 创建邮件发送类4. 实现邮件

C/C++中OpenCV 矩阵运算的实现

《C/C++中OpenCV矩阵运算的实现》本文主要介绍了C/C++中OpenCV矩阵运算的实现,包括基本算术运算(标量与矩阵)、矩阵乘法、转置、逆矩阵、行列式、迹、范数等操作,感兴趣的可以了解一下... 目录矩阵的创建与初始化创建矩阵访问矩阵元素基本的算术运算 ➕➖✖️➗矩阵与标量运算矩阵与矩阵运算 (逐元

Python使用pynput模拟实现键盘自动输入工具

《Python使用pynput模拟实现键盘自动输入工具》在日常办公和软件开发中,我们经常需要处理大量重复的文本输入工作,所以本文就来和大家介绍一款使用Python的PyQt5库结合pynput键盘控制... 目录概述:当自动化遇上可视化功能全景图核心功能矩阵技术栈深度效果展示使用教程四步操作指南核心代码解析