Python俄罗斯方块可操纵卷积分类 | 稀疏辨识算法 | 微分方程神经求解器

本文主要是介绍Python俄罗斯方块可操纵卷积分类 | 稀疏辨识算法 | 微分方程神经求解器,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🎯要点

🎯组卷积网络:实现循环组,可视化组动作,实现提升卷积核,MNIST 训练数据集训练组卷积网络的泛化能力 | 🎯可操控卷积网络:紧群的表征与调和分析,代码验证常规表征结果,不可约表征实现,傅里叶变换对群调和分析,实现可操控卷积网络 | 🎯深度概率模型:给定高维和结构化对单变量响应变量建模,实现分类响应模型,顺序响应模型、序列标记模型 | 🎯深度离散潜变量模型:使用FashionMNIST数据集,实现伯努利分布的乘积,实现均匀分类分布,测试先验分布,实现条件概率分布 | 🎯流生成模型 | 🎯超参数调优和多GPU编程 | 🎯贝叶斯神经网络实现 | 🎯非线性动力系统稀疏辨识算法 | 🎯偏微分方程神经网络求解器 | 🎯常微分方程神经网络求解器

🎯语言模型:Python发票合同 | 解缠注意力语言模型

🎯非线性系统:Julia和Python蛛网图轨道图庞加莱截面曲面确定性非线性系统

🍇Python俄罗斯方块可操纵卷积分类

方块,有时也被称为四块、方块,骨牌或四格,是所有已知的俄罗斯方块游戏中使用的方块。它们有七种形状,都可以旋转然后放下。方块的面积都是四个方格。在某些俄罗斯方块游戏中,它们的颜色会有所不同。四格骨牌是由四个方块组成的多格骨牌。七个单面四格骨牌分别是 I、O、T、S、Z、J 和 L。

💦使用门实现模型拟合俄罗斯方块数据集

import loggingimport torch
from torch_cluster import radius_graph
from torch_geometric.data import Data, DataLoader
from torch_scatter import scatterdef tblock():pos = [[(0, 0, 0), (0, 0, 1), (1, 0, 0), (1, 1, 0)],  [(0, 0, 0), (0, 0, 1), (1, 0, 0), (1, -1, 0)],  [(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0)],  [(0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 0, 3)],  [(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0)],  [(0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 1, 0)],  [(0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 1, 1)], [(0, 0, 0), (1, 0, 0), (1, 1, 0), (2, 1, 0)],  ]pos = torch.tensor(pos, dtype=torch.get_default_dtype())labels = torch.tensor([[+1, 0, 0, 0, 0, 0, 0],  [-1, 0, 0, 0, 0, 0, 0],  [0, 1, 0, 0, 0, 0, 0],  [0, 0, 1, 0, 0, 0, 0],  [0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0],  [0, 0, 0, 0, 0, 1, 0],  [0, 0, 0, 0, 0, 0, 1],  ],dtype=torch.get_default_dtype(),)def mean_std(name, x) -> None:print(f"{name} \t{x.mean():.1f} ± ({x.var(0).mean().sqrt():.1f}|{x.std():.1f})")class Convolution(torch.nn.Module):def __init__(self, irreps_in, irreps_sh, irreps_out, num_neighbors) -> None:super().__init__()self.num_neighbors = num_neighborstp = FullyConnectedTensorProduct(irreps_in1=irreps_in,irreps_in2=irreps_sh,irreps_out=irreps_out,internal_weights=False,shared_weights=False,)self.fc = FullyConnectedNet([3, 256, tp.weight_numel], torch.relu)self.tp = tpself.irreps_out = self.tp.irreps_outdef forward(self, node_features, edge_src, edge_dst, edge_attr, edge_scalars) -> torch.Tensor:weight = self.fc(edge_scalars)edge_features = self.tp(node_features[edge_src], edge_attr, weight)node_features = scatter(edge_features, edge_dst, dim=0).div(self.num_neighbors**0.5)return node_featuresclass Network(torch.nn.Module):def __init__(self) -> None:super().__init__()self.num_neighbors = 3.8 self.irreps_sh = o3.Irreps.spherical_harmonics(3)irreps = self.irreps_sh# First layer with gategate = Gate("16x0e + 16x0o",[torch.relu, torch.abs], "8x0e + 8x0o + 8x0e + 8x0o",[torch.relu, torch.tanh, torch.relu, torch.tanh],  # gates (scalars)"16x1o + 16x1e",  )self.conv = Convolution(irreps, self.irreps_sh, gate.irreps_in, self.num_neighbors)self.gate = gateirreps = self.gate.irreps_out# Final layerself.final = Convolution(irreps, self.irreps_sh, "0o + 6x0e", self.num_neighbors)self.irreps_out = self.final.irreps_out

💦多项式拟合俄罗斯方块数据集

import loggingimport torch
from torch_cluster import radius_graph
from torch_geometric.data import Data, DataLoader
from torch_scatter import scatterdef tblock():pos = [[(0, 0, 0), (0, 0, 1), (1, 0, 0), (1, 1, 0)],  [(0, 0, 0), (0, 0, 1), (1, 0, 0), (1, -1, 0)],  [(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0)],  [(0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 0, 3)],  [(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0)],  [(0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 1, 0)],  [(0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 1, 1)],  [(0, 0, 0), (1, 0, 0), (1, 1, 0), (2, 1, 0)],  ]pos = torch.tensor(pos, dtype=torch.get_default_dtype())labels = torch.tensor([[+1, 0, 0, 0, 0, 0, 0],  [-1, 0, 0, 0, 0, 0, 0],  [0, 1, 0, 0, 0, 0, 0],  [0, 0, 1, 0, 0, 0, 0],  [0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0],  [0, 0, 0, 0, 0, 1, 0],  [0, 0, 0, 0, 0, 0, 1],  ],dtype=torch.get_default_dtype(),)pos = torch.einsum("zij,zaj->zai", o3.rand_matrix(len(pos)), pos)dataset = [Data(pos=pos) for pos in pos]data = next(iter(DataLoader(dataset, batch_size=len(dataset))))return data, labelsclass InvariantPolynomial(torch.nn.Module):def __init__(self) -> None:super().__init__()self.irreps_sh: o3.Irreps = o3.Irreps.spherical_harmonics(3)irreps_mid = o3.Irreps("64x0e + 24x1e + 24x1o + 16x2e + 16x2o")irreps_out = o3.Irreps("0o + 6x0e")self.tp1 = FullyConnectedTensorProduct(irreps_in1=self.irreps_sh,irreps_in2=self.irreps_sh,irreps_out=irreps_mid,)self.tp2 = FullyConnectedTensorProduct(irreps_in1=irreps_mid,irreps_in2=self.irreps_sh,irreps_out=irreps_out,)self.irreps_out = self.tp2.irreps_outdef forward(self, data) -> torch.Tensor:num_neighbors = 2  num_nodes = 4  # typical number of nodesedge_src, edge_dst = radius_graph(x=data.pos, r=1.1, batch=data.batch)  edge_vec = data.pos[edge_src] - data.pos[edge_dst]edge_sh = o3.spherical_harmonics(l=self.irreps_sh,x=edge_vec,normalize=False,  normalization="component",)node_features = scatter(edge_sh, edge_dst, dim=0).div(num_neighbors**0.5)edge_features = self.tp1(node_features[edge_src], edge_sh)node_features = scatter(edge_features, edge_dst, dim=0).div(num_neighbors**0.5)edge_features = self.tp2(node_features[edge_src], edge_sh)node_features = scatter(edge_features, edge_dst, dim=0).div(num_neighbors**0.5)return scatter(node_features, data.batch, dim=0).div(num_nodes**0.5)def main() -> None:data, labels = tetris()f = InvariantPolynomial()optim = torch.optim.Adam(f.parameters(), lr=1e-2)# == Train ==for step in range(200):pred = f(data)loss = (pred - labels).pow(2).sum()optim.zero_grad()loss.backward()optim.step()if step % 10 == 0:accuracy = pred.round().eq(labels).all(dim=1).double().mean(dim=0).item()print(f"epoch {step:5d} | loss {loss:<10.1f} | {100 * accuracy:5.1f}% accuracy")def test() -> None:data, labels = tetris()f = InvariantPolynomial()pred = f(data)loss = (pred - labels).pow(2).sum()loss.backward()rotated_data, _ = tetris()error = f(rotated_data) - f(data)assert error.abs().max() < 1e-5

👉参阅一:计算思维

👉参阅二:亚图跨际

这篇关于Python俄罗斯方块可操纵卷积分类 | 稀疏辨识算法 | 微分方程神经求解器的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1062294

相关文章

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

Python安装时常见报错以及解决方案

《Python安装时常见报错以及解决方案》:本文主要介绍在安装Python、配置环境变量、使用pip以及运行Python脚本时常见的错误及其解决方案,文中介绍的非常详细,需要的朋友可以参考下... 目录一、安装 python 时常见报错及解决方案(一)安装包下载失败(二)权限不足二、配置环境变量时常见报错及

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

Python itertools中accumulate函数用法及使用运用详细讲解

《Pythonitertools中accumulate函数用法及使用运用详细讲解》:本文主要介绍Python的itertools库中的accumulate函数,该函数可以计算累积和或通过指定函数... 目录1.1前言:1.2定义:1.3衍生用法:1.3Leetcode的实际运用:总结 1.1前言:本文将详

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操