Python俄罗斯方块可操纵卷积分类 | 稀疏辨识算法 | 微分方程神经求解器

本文主要是介绍Python俄罗斯方块可操纵卷积分类 | 稀疏辨识算法 | 微分方程神经求解器,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🎯要点

🎯组卷积网络:实现循环组,可视化组动作,实现提升卷积核,MNIST 训练数据集训练组卷积网络的泛化能力 | 🎯可操控卷积网络:紧群的表征与调和分析,代码验证常规表征结果,不可约表征实现,傅里叶变换对群调和分析,实现可操控卷积网络 | 🎯深度概率模型:给定高维和结构化对单变量响应变量建模,实现分类响应模型,顺序响应模型、序列标记模型 | 🎯深度离散潜变量模型:使用FashionMNIST数据集,实现伯努利分布的乘积,实现均匀分类分布,测试先验分布,实现条件概率分布 | 🎯流生成模型 | 🎯超参数调优和多GPU编程 | 🎯贝叶斯神经网络实现 | 🎯非线性动力系统稀疏辨识算法 | 🎯偏微分方程神经网络求解器 | 🎯常微分方程神经网络求解器

🎯语言模型:Python发票合同 | 解缠注意力语言模型

🎯非线性系统:Julia和Python蛛网图轨道图庞加莱截面曲面确定性非线性系统

🍇Python俄罗斯方块可操纵卷积分类

方块,有时也被称为四块、方块,骨牌或四格,是所有已知的俄罗斯方块游戏中使用的方块。它们有七种形状,都可以旋转然后放下。方块的面积都是四个方格。在某些俄罗斯方块游戏中,它们的颜色会有所不同。四格骨牌是由四个方块组成的多格骨牌。七个单面四格骨牌分别是 I、O、T、S、Z、J 和 L。

💦使用门实现模型拟合俄罗斯方块数据集

import loggingimport torch
from torch_cluster import radius_graph
from torch_geometric.data import Data, DataLoader
from torch_scatter import scatterdef tblock():pos = [[(0, 0, 0), (0, 0, 1), (1, 0, 0), (1, 1, 0)],  [(0, 0, 0), (0, 0, 1), (1, 0, 0), (1, -1, 0)],  [(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0)],  [(0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 0, 3)],  [(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0)],  [(0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 1, 0)],  [(0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 1, 1)], [(0, 0, 0), (1, 0, 0), (1, 1, 0), (2, 1, 0)],  ]pos = torch.tensor(pos, dtype=torch.get_default_dtype())labels = torch.tensor([[+1, 0, 0, 0, 0, 0, 0],  [-1, 0, 0, 0, 0, 0, 0],  [0, 1, 0, 0, 0, 0, 0],  [0, 0, 1, 0, 0, 0, 0],  [0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0],  [0, 0, 0, 0, 0, 1, 0],  [0, 0, 0, 0, 0, 0, 1],  ],dtype=torch.get_default_dtype(),)def mean_std(name, x) -> None:print(f"{name} \t{x.mean():.1f} ± ({x.var(0).mean().sqrt():.1f}|{x.std():.1f})")class Convolution(torch.nn.Module):def __init__(self, irreps_in, irreps_sh, irreps_out, num_neighbors) -> None:super().__init__()self.num_neighbors = num_neighborstp = FullyConnectedTensorProduct(irreps_in1=irreps_in,irreps_in2=irreps_sh,irreps_out=irreps_out,internal_weights=False,shared_weights=False,)self.fc = FullyConnectedNet([3, 256, tp.weight_numel], torch.relu)self.tp = tpself.irreps_out = self.tp.irreps_outdef forward(self, node_features, edge_src, edge_dst, edge_attr, edge_scalars) -> torch.Tensor:weight = self.fc(edge_scalars)edge_features = self.tp(node_features[edge_src], edge_attr, weight)node_features = scatter(edge_features, edge_dst, dim=0).div(self.num_neighbors**0.5)return node_featuresclass Network(torch.nn.Module):def __init__(self) -> None:super().__init__()self.num_neighbors = 3.8 self.irreps_sh = o3.Irreps.spherical_harmonics(3)irreps = self.irreps_sh# First layer with gategate = Gate("16x0e + 16x0o",[torch.relu, torch.abs], "8x0e + 8x0o + 8x0e + 8x0o",[torch.relu, torch.tanh, torch.relu, torch.tanh],  # gates (scalars)"16x1o + 16x1e",  )self.conv = Convolution(irreps, self.irreps_sh, gate.irreps_in, self.num_neighbors)self.gate = gateirreps = self.gate.irreps_out# Final layerself.final = Convolution(irreps, self.irreps_sh, "0o + 6x0e", self.num_neighbors)self.irreps_out = self.final.irreps_out

💦多项式拟合俄罗斯方块数据集

import loggingimport torch
from torch_cluster import radius_graph
from torch_geometric.data import Data, DataLoader
from torch_scatter import scatterdef tblock():pos = [[(0, 0, 0), (0, 0, 1), (1, 0, 0), (1, 1, 0)],  [(0, 0, 0), (0, 0, 1), (1, 0, 0), (1, -1, 0)],  [(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0)],  [(0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 0, 3)],  [(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0)],  [(0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 1, 0)],  [(0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 1, 1)],  [(0, 0, 0), (1, 0, 0), (1, 1, 0), (2, 1, 0)],  ]pos = torch.tensor(pos, dtype=torch.get_default_dtype())labels = torch.tensor([[+1, 0, 0, 0, 0, 0, 0],  [-1, 0, 0, 0, 0, 0, 0],  [0, 1, 0, 0, 0, 0, 0],  [0, 0, 1, 0, 0, 0, 0],  [0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0],  [0, 0, 0, 0, 0, 1, 0],  [0, 0, 0, 0, 0, 0, 1],  ],dtype=torch.get_default_dtype(),)pos = torch.einsum("zij,zaj->zai", o3.rand_matrix(len(pos)), pos)dataset = [Data(pos=pos) for pos in pos]data = next(iter(DataLoader(dataset, batch_size=len(dataset))))return data, labelsclass InvariantPolynomial(torch.nn.Module):def __init__(self) -> None:super().__init__()self.irreps_sh: o3.Irreps = o3.Irreps.spherical_harmonics(3)irreps_mid = o3.Irreps("64x0e + 24x1e + 24x1o + 16x2e + 16x2o")irreps_out = o3.Irreps("0o + 6x0e")self.tp1 = FullyConnectedTensorProduct(irreps_in1=self.irreps_sh,irreps_in2=self.irreps_sh,irreps_out=irreps_mid,)self.tp2 = FullyConnectedTensorProduct(irreps_in1=irreps_mid,irreps_in2=self.irreps_sh,irreps_out=irreps_out,)self.irreps_out = self.tp2.irreps_outdef forward(self, data) -> torch.Tensor:num_neighbors = 2  num_nodes = 4  # typical number of nodesedge_src, edge_dst = radius_graph(x=data.pos, r=1.1, batch=data.batch)  edge_vec = data.pos[edge_src] - data.pos[edge_dst]edge_sh = o3.spherical_harmonics(l=self.irreps_sh,x=edge_vec,normalize=False,  normalization="component",)node_features = scatter(edge_sh, edge_dst, dim=0).div(num_neighbors**0.5)edge_features = self.tp1(node_features[edge_src], edge_sh)node_features = scatter(edge_features, edge_dst, dim=0).div(num_neighbors**0.5)edge_features = self.tp2(node_features[edge_src], edge_sh)node_features = scatter(edge_features, edge_dst, dim=0).div(num_neighbors**0.5)return scatter(node_features, data.batch, dim=0).div(num_nodes**0.5)def main() -> None:data, labels = tetris()f = InvariantPolynomial()optim = torch.optim.Adam(f.parameters(), lr=1e-2)# == Train ==for step in range(200):pred = f(data)loss = (pred - labels).pow(2).sum()optim.zero_grad()loss.backward()optim.step()if step % 10 == 0:accuracy = pred.round().eq(labels).all(dim=1).double().mean(dim=0).item()print(f"epoch {step:5d} | loss {loss:<10.1f} | {100 * accuracy:5.1f}% accuracy")def test() -> None:data, labels = tetris()f = InvariantPolynomial()pred = f(data)loss = (pred - labels).pow(2).sum()loss.backward()rotated_data, _ = tetris()error = f(rotated_data) - f(data)assert error.abs().max() < 1e-5

👉参阅一:计算思维

👉参阅二:亚图跨际

这篇关于Python俄罗斯方块可操纵卷积分类 | 稀疏辨识算法 | 微分方程神经求解器的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1062294

相关文章

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

利用Python编写一个简单的聊天机器人

《利用Python编写一个简单的聊天机器人》这篇文章主要为大家详细介绍了如何利用Python编写一个简单的聊天机器人,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 使用 python 编写一个简单的聊天机器人可以从最基础的逻辑开始,然后逐步加入更复杂的功能。这里我们将先实现一个简单的

基于Python开发电脑定时关机工具

《基于Python开发电脑定时关机工具》这篇文章主要为大家详细介绍了如何基于Python开发一个电脑定时关机工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 简介2. 运行效果3. 相关源码1. 简介这个程序就像一个“忠实的管家”,帮你按时关掉电脑,而且全程不需要你多做

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

Python xmltodict实现简化XML数据处理

《Pythonxmltodict实现简化XML数据处理》Python社区为提供了xmltodict库,它专为简化XML与Python数据结构的转换而设计,本文主要来为大家介绍一下如何使用xmltod... 目录一、引言二、XMLtodict介绍设计理念适用场景三、功能参数与属性1、parse函数2、unpa

Python中使用defaultdict和Counter的方法

《Python中使用defaultdict和Counter的方法》本文深入探讨了Python中的两个强大工具——defaultdict和Counter,并详细介绍了它们的工作原理、应用场景以及在实际编... 目录引言defaultdict的深入应用什么是defaultdictdefaultdict的工作原理

numpy求解线性代数相关问题

《numpy求解线性代数相关问题》本文主要介绍了numpy求解线性代数相关问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 在numpy中有numpy.array类型和numpy.mat类型,前者是数组类型,后者是矩阵类型。数组

Python中@classmethod和@staticmethod的区别

《Python中@classmethod和@staticmethod的区别》本文主要介绍了Python中@classmethod和@staticmethod的区别,文中通过示例代码介绍的非常详细,对大... 目录1.@classmethod2.@staticmethod3.例子1.@classmethod

Python手搓邮件发送客户端

《Python手搓邮件发送客户端》这篇文章主要为大家详细介绍了如何使用Python手搓邮件发送客户端,支持发送邮件,附件,定时发送以及个性化邮件正文,感兴趣的可以了解下... 目录1. 简介2.主要功能2.1.邮件发送功能2.2.个性签名功能2.3.定时发送功能2. 4.附件管理2.5.配置加载功能2.6.