基于图像特征的视觉跟踪系统(Feature-based visual tracking systems)--一篇Visual Tracking Benchmark (2013)综述

本文主要是介绍基于图像特征的视觉跟踪系统(Feature-based visual tracking systems)--一篇Visual Tracking Benchmark (2013)综述,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

reference:http://blog.csdn.net/anshan1984/article/details/8866455

最近读到一篇关于视觉跟踪的综述性文章,“Evaluation of Interest Point Detectors and Feature Descriptors for Visual Tracking”,发表在2011年3月International Journal of Computer Vision上。作者非常详尽的评估了2010年之前的图像检测子及图像描述子(检测子包括Harris Corner、Shi-Tomasi' feature、DoG、Fast Hessian、FAST、CenSurE;描述子包括Image Patch、SIFT、SURF、keypoint classification with Randomized Trees、keypoint classification with Randomized Ferns),以及它们用于视觉跟踪时的各项性能,并且提供精心设计的数据集http://ilab.cs.ucsb.edu/tracking_dataset_ijcv/。


视觉跟踪是许多应用的核心部分,包括视觉里程计(visual odomety)、基于视觉的同步定位与地图创建(visual Simultaneous Localization and Mapping)以及增强视觉(Augmented Reality)。这些应用的需求不同,但是都需要鲁棒、精确、快速实时的底层视觉跟踪方法。光流法(optical flow)与基于特征的跟踪方法(feature-basedvisual tracking)是视觉跟踪的两种主要方法,而后者更为常用。


文中归纳了截止2010年已有的基于特征的视觉跟踪系统,已经算非常详尽。

论文下载地址:cs.iupui.edu/~tuceryan/pdf-repository/Gauglitz2011.pdf



Visual Tracking 领域最新paper与code
(2016-csdn blog:http://blog.csdn.net/cyh_24/article/details/51592156)

最近在研究 tracking,所以总结了一些较新的 tracking 相关的论文和源码。

希望能够为刚进入这个领域的同学节省一些时间。

如您有其他优秀的paper或者code,欢迎在回复中留言~谢谢!


Learning Multi-Domain Convolutional Neural Networks for Visual Tracking (VOT2015 冠军) 
author: Hyeonseob Nam, Bohyung Han 
homepage: http://cvlab.postech.ac.kr/research/mdnet/ 
code: https://github.com/HyeonseobNam/MDNet 
阅读笔记: http://blog.csdn.net/cyh_24/article/details/51590174

Learning to Track: Online Multi-Object Tracking by Decision Making (ICCV 2015) 
author: Yu Xiang, Alexandre Alahi, Silvio Savarese 
slides: https://yuxng.github.io/Xiang_ICCV15_12162015.pdf 
code: https://github.com/yuxng/MDP_Tracking

Hierarchical Convolutional Features for Visual Tracking (ICCV 2015) 
author: Chao Ma, Jia-Bin Huang, Xiaokang Yang, Ming-Husan Yang 
project page: https://sites.google.com/site/jbhuang0604/publications/cf2 
code: https://github.com/jbhuang0604/CF2

Robust Visual Tracking via Convolutional Networks without Training (2015) 
author: Kaihua Zhang, Qingshan Liu, Yi Wu, and Ming-Hsuan Yang 
code: http://kaihuazhang.net/CNT_matlab.rar

Transferring Rich Feature Hierarchies for Robust Visual Tracking (2015) 
author: Naiyan Wang, Siyi Li, Abhinav Gupta, Dit-Yan Yeung 
slides: http://valse.mmcheng.net/ftp/20150325/RVT.pptx

Understanding and Diagnosing Visual Tracking Systems (ICCV 2015) 
author: Naiyan Wang, Jianping Shi, Dit-Yan Yeung, Jiaya Jia 
project page: http://winsty.net/tracker_diagnose.html 
code: http://120.52.72.43/winsty.net/c3pr90ntcsf0/diagnose/diagnose_code.zip

RATM: Recurrent Attentive Tracking Model (2015) 
author: Samira Ebrahimi Kahou, Vincent Michalski, Roland Memisevic 
code: https://github.com/saebrahimi/RATM

Visual Tracking with Fully Convolutional Networks (ICCV 2015) 
author: Lijun Wang, Wanli Ouyang, Xiaogang Wang, Huchuan Lu 
code: https://github.com/scott89/FCNT

Deep Tracking: Seeing Beyond Seeing Using Recurrent Neural Networks (AAAI 2016) 
author: Peter Ondr úška and Ingmar Posner 
code: https://github.com/pondruska/DeepTracking

Learning to Track at 100 FPS with Deep Regression Networks (2016) 
author: David Held, Sebastian Thrun, Silvio Savarese

Online Multi-target Tracking using Recurrent Neural Networks (2016) 
author: Anton Milan, Seyed Hamid Rezatofighi, Anthony Dick, Konrad Schindler, Ian Reid 
code: https://bitbucket.org/amilan/rnntracking

Multi-Target Tracking by Discrete-Continuous Energy Minimization (2016) 
author: A. Milan, K. Schindler, S. Roth 
author homepage: http://www.milanton.de/ 
project page: http://www.milanton.de/dctracking/index.html

Near-Online Multi-target Tracking with Aggregated Local Flow Descriptor (2015) 
author: Wongun Choi



这篇关于基于图像特征的视觉跟踪系统(Feature-based visual tracking systems)--一篇Visual Tracking Benchmark (2013)综述的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1050200

相关文章

在不同系统间迁移Python程序的方法与教程

《在不同系统间迁移Python程序的方法与教程》本文介绍了几种将Windows上编写的Python程序迁移到Linux服务器上的方法,包括使用虚拟环境和依赖冻结、容器化技术(如Docker)、使用An... 目录使用虚拟环境和依赖冻结1. 创建虚拟环境2. 冻结依赖使用容器化技术(如 docker)1. 创

CentOS系统Maven安装教程分享

《CentOS系统Maven安装教程分享》本文介绍了如何在CentOS系统中安装Maven,并提供了一个简单的实际应用案例,安装Maven需要先安装Java和设置环境变量,Maven可以自动管理项目的... 目录准备工作下载并安装Maven常见问题及解决方法实际应用案例总结Maven是一个流行的项目管理工具

C#实现系统信息监控与获取功能

《C#实现系统信息监控与获取功能》在C#开发的众多应用场景中,获取系统信息以及监控用户操作有着广泛的用途,比如在系统性能优化工具中,需要实时读取CPU、GPU资源信息,本文将详细介绍如何使用C#来实现... 目录前言一、C# 监控键盘1. 原理与实现思路2. 代码实现二、读取 CPU、GPU 资源信息1.

在C#中获取端口号与系统信息的高效实践

《在C#中获取端口号与系统信息的高效实践》在现代软件开发中,尤其是系统管理、运维、监控和性能优化等场景中,了解计算机硬件和网络的状态至关重要,C#作为一种广泛应用的编程语言,提供了丰富的API来帮助开... 目录引言1. 获取端口号信息1.1 获取活动的 TCP 和 UDP 连接说明:应用场景:2. 获取硬

JAVA系统中Spring Boot应用程序的配置文件application.yml使用详解

《JAVA系统中SpringBoot应用程序的配置文件application.yml使用详解》:本文主要介绍JAVA系统中SpringBoot应用程序的配置文件application.yml的... 目录文件路径文件内容解释1. Server 配置2. Spring 配置3. Logging 配置4. Ma

2.1/5.1和7.1声道系统有什么区别? 音频声道的专业知识科普

《2.1/5.1和7.1声道系统有什么区别?音频声道的专业知识科普》当设置环绕声系统时,会遇到2.1、5.1、7.1、7.1.2、9.1等数字,当一遍又一遍地看到它们时,可能想知道它们是什... 想要把智能电视自带的音响升级成专业级的家庭影院系统吗?那么你将面临一个重要的选择——使用 2.1、5.1 还是

高效管理你的Linux系统: Debian操作系统常用命令指南

《高效管理你的Linux系统:Debian操作系统常用命令指南》在Debian操作系统中,了解和掌握常用命令对于提高工作效率和系统管理至关重要,本文将详细介绍Debian的常用命令,帮助读者更好地使... Debian是一个流行的linux发行版,它以其稳定性、强大的软件包管理和丰富的社区资源而闻名。在使用

基于WinForm+Halcon实现图像缩放与交互功能

《基于WinForm+Halcon实现图像缩放与交互功能》本文主要讲述在WinForm中结合Halcon实现图像缩放、平移及实时显示灰度值等交互功能,包括初始化窗口的不同方式,以及通过特定事件添加相应... 目录前言初始化窗口添加图像缩放功能添加图像平移功能添加实时显示灰度值功能示例代码总结最后前言本文将

Ubuntu系统怎么安装Warp? 新一代AI 终端神器安装使用方法

《Ubuntu系统怎么安装Warp?新一代AI终端神器安装使用方法》Warp是一款使用Rust开发的现代化AI终端工具,该怎么再Ubuntu系统中安装使用呢?下面我们就来看看详细教程... Warp Terminal 是一款使用 Rust 开发的现代化「AI 终端」工具。最初它只支持 MACOS,但在 20

windows系统下shutdown重启关机命令超详细教程

《windows系统下shutdown重启关机命令超详细教程》shutdown命令是一个强大的工具,允许你通过命令行快速完成关机、重启或注销操作,本文将为你详细解析shutdown命令的使用方法,并提... 目录一、shutdown 命令简介二、shutdown 命令的基本用法三、远程关机与重启四、实际应用