【python】python化妆品销售logistic逻辑回归预测分析可视化(源码+课程论文+数据集)【独一无二】

本文主要是介绍【python】python化妆品销售logistic逻辑回归预测分析可视化(源码+课程论文+数据集)【独一无二】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

请添加图片描述


👉博__主👈:米码收割机
👉技__能👈:C++/Python语言
👉公众号👈:测试开发自动化【获取源码+商业合作】
👉荣__誉👈:阿里云博客专家博主、51CTO技术博主
👉专__注👈:专注主流机器人、人工智能等相关领域的开发、测试技术。


系列文章目录


目录

  • 系列文章目录
  • 一、功能设计
      • 项目代码设计重点提取
  • 二、数据可视化
  • 三、逻辑回归模型构建与评估


一、功能设计

项目代码设计重点提取

  • 目标:对化妆品销售数据进行深入分析与挖掘,通过数据可视化和逻辑回归模型,为商家提供市场洞察和决策支持。

  • 数据加载和预处理

    • 使用Pandas库读取Excel文件并预览数据。
    • 处理日期格式不统一和数值字段包含非数值字符的问题,编写自定义日期解析函数和正则表达式。
    • 确保所有字段均为有效的数值类型,移除缺失值行。
  • 数据可视化

    • 使用Matplotlib库绘制多种图表,展示数据特征和趋势:
      • 折线图:展示订单金额随日期的变化,揭示销售的时间趋势。
      • 散点图:分析订购数量与金额的关系,显示订购数量对总金额的影响。
      • 柱状图:显示各省份的总金额分布,为区域销售策略的制定提供依据。
      • 饼状图:展示各省份的订单数量占比,直观了解不同区域的市场份额。
      • 雷达图:比较各商品编号的订购数量、订购单价和金额,评估不同商品的销售表现。
      • 箱线图:展示订购数量和金额的分布情况,识别数据中的异常值和分布特征。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “化妆品逻辑” 获取。👈👈👈

  • 逻辑回归模型

    • 通过定义高金额订单的阈值,将目标变量分为高金额和低金额两类。
    • 使用LabelEncoder将分类变量转换为数值。
    • 将数据分为训练集和测试集,利用逻辑回归模型进行训练和预测。
    • 评估模型性能,计算准确率、混淆矩阵和分类报告。
    • 绘制热力图和目标变量分布图,分析特征间的相关性和目标变量的分布情况。
  • 整体设计思路

    • 注重数据清理、可视化和建模三部分的紧密结合。
    • 通过系统化的分析方法,从多角度挖掘数据价值,为商家提供全面的市场分析和决策支持。
    • 确保分析结果的准确性和可靠性,为后续的模型优化和应用拓展提供坚实基础。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “化妆品逻辑” 获取。👈👈👈


二、数据可视化

折线图:展示订单金额随日期变化的趋势,帮助分析销售的时间变化。

plt.plot(df['订单日期'], df['金额'], marker='o', linestyle='-', color='b')

折线图展示了订单金额随日期的变化趋势,帮助了解销售的时间分布和变化规律。通过识别销售高峰期和低谷期,可以优化销售策略、安排促销活动和调整库存管理,提升销售效率。
在这里插入图片描述

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “化妆品逻辑” 获取。👈👈👈

散点图:分析订购数量与金额之间的关系,揭示数量对总金额的影响。

plt.scatter(df['订购数量'], df['金额'], c='r', marker='x')

散点图揭示了订购数量与订单金额之间的关系,帮助理解不同订购数量对销售金额的影响。通过观察散点的分布情况,可以发现订购数量与销售金额的相关性,识别出表现异常的订单,并为商品定价策略和销售预测提供依据。
在这里插入图片描述

柱状图:显示各省份的总金额分布,为区域销售策略提供依据。

plt.bar(province_amount['所在省份'], province_amount['金额'], color='g')

柱状图显示了各省份的总销售金额,为提供了区域销售的概览。
在这里插入图片描述

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “化妆品逻辑” 获取。👈👈👈

饼状图:展示各省份的订单数量占比,直观了解不同区域的市场份额。

plt.pie(province_count, labels=province_count.index, autopct='%1.1f%%', startangle=140)

饼状图直观展示了各省份订单数量在总订单中的占比,帮助了解不同区域的市场份额和客户分布情况。通过比较各省份的占比,可以发现市场渗透率较高的区域和潜在的增长区域,为市场扩展和推广活动提供指导。
在这里插入图片描述

箱线图:展示订购数量和金额的分布情况,识别数据中的异常值和分布特征。

axes[0].boxplot(df['订购数量'])
axes[1].boxplot(df['金额'])

在这里插入图片描述

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “化妆品逻辑” 获取。👈👈👈


三、逻辑回归模型构建与评估

功能:构建逻辑回归模型,预测高金额订单,评估模型性能。

具体操作: 定义目标变量(高金额订单),并使用LabelEncoder将分类变量转换为数值。将数据分为训练集和测试集,确保模型的训练和评估过程科学合理。

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

模型训练:
使用逻辑回归模型对训练集进行训练,构建预测模型。

model = LogisticRegression()
model.fit(X_train, y_train)

模型评估:
进行预测并评估模型性能,计算准确率、混淆矩阵和分类报告,全面评估模型的预测效果。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “化妆品逻辑” 获取。👈👈👈

accuracy = accuracy_score(y_test, y_pred)
conf_matrix = confusion_matrix(y_test, y_pred)
class_report = classification_report(y_test, y_pred)

在这里插入图片描述

在这里插入图片描述
热力图:展示特征之间的相关性,帮助理解特征间的相互关系。热力图展示了各特征之间的相关性,帮助理解特征间的相互关系和对目标变量的影响。
在这里插入图片描述
目标变量分布图:展示高金额和低金额订单的数量分布,帮助理解目标变量的分布情况。目标变量分布图展示了高金额和低金额订单的数量分布情况,帮助直观了解目标变量的分布特征。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “化妆品逻辑” 获取。👈👈👈

在这里插入图片描述
订购数量与金额关系图:展示不同金额订单的订购数量分布。订购数量与金额关系图展示了不同金额订单的订购数量分布,并通过颜色区分高金额和低金额订单。
在这里插入图片描述

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “化妆品逻辑” 获取。👈👈👈

这篇关于【python】python化妆品销售logistic逻辑回归预测分析可视化(源码+课程论文+数据集)【独一无二】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1049555

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟 开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚 第一站:海量资源,应有尽有 走进“智听

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi