揭开FFT时域加窗的奥秘

2024-06-10 21:12
文章标签 揭开 时域 fft 奥秘 加窗

本文主要是介绍揭开FFT时域加窗的奥秘,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

FFT – Spectral Leakage

假设用于ADC输出数据分析的采样点数为N,而采样率为Fs,那我们就知道,这种情况下的FFT频谱分辨率为δf,那么δf=Fs/N。如果此时我们给ADC输入一个待测量的单频Fin,如果此时Fin除以δf不是整数,就会产生频率泄露。要尽可能保证测得的FFT不会产生频谱泄露,有两种方式进行处理,相干采样和时域加窗

(1)相干采样

假设M是我们需要采样的输入信号的周期数,那么M/Fin=N/Fs,也就是两个时间长度是一致的,也就是Fin/ Fs=M/N,这个比值要能够被表达成为有理数(也就是整数或者分数)N必须是2的幂数(这是从蝶形运算的角度考虑的)。MN还必须要互为质数(这样可以避免重复采样相同位置的,重复采样周期信号相同的位置点不会获得额外的信息,因此不推荐M非素数(素数,除了1和它本身以外不再有其他因数的自然数))。如果选择了M/N为非互质时,将导致信号周期性的量化,以及仅有少量的量化步进被测试。量化周期性的重复,建立了一个线谱,它是一个令人费解的实频率线(如下图2所示在谐波镜像之下的红线,这是由ADC的非线性导致的,而黑色痕迹则是因为量化周期的重复性导致的,也就是M/N为非互质导致的,图3是采用相干采样得到的结果

从相干采样的描述来看,相干采样的输入信号Fin和采样频率Fs必须是同步信号。另外相干采样可以确保信号功率仅在一个FFT bin(也就是频谱分辨率)之中。

图1 想干采样定理:
在这里插入图片描述

图2 重复相同位置采样导致的谐波痕线抬升:在这里插入图片描述

图3 相干采样改善还原了真实的非线性特性:
在这里插入图片描述

(2)时域加窗

如果采样的波形是非连续的,也就是采集的样本不是信号的整数倍周期,那么就需要消除这种现象,从而减小FFT的频谱泄露(注意不是完全改善),TI的官方文档为我们展示了这一现象,如下图3所示,对信号进行了时域加窗,加窗之后频谱泄露有所减小

图4 非周期采样频谱泄露展示:
在这里插入图片描述

很明显No window(矩形窗)的旁瓣非常高,也就意味着,它的泄露抑制的不是很好。但是频率分辨率准确,幅值精度低。

  • 不同的窗函数对信号频谱的影响是不一样的,这主要是因为不同的窗函数,产生泄漏的大小不一样,频率分辨能力也不一样。信号的截短产生了能量泄漏,而用 FFT 算法计算频谱又产生了栅栏效应,从原理上讲这两种误差都是不能消除的,但是我们可以通过选择不同的窗函数对它们的影响进行抑制。(矩形窗 主瓣窄,旁瓣大,频率识别精度最高,幅值识别精度最低;布莱克曼窗主瓣宽,旁瓣小,频率识别精度 最低,但幅值识别精度最高)
  • Hanning(汉宁窗)是使用最广泛的一种窗函数,除此之外还有,Hamming(海明窗),Flat-top 窗和 Balckman-Harris 窗,矩形窗产生最窄的谱线,加 Flat-top 窗谱线最宽。旁瓣的影响和精确频率分辨率 有时候是不可兼得的。(矩形窗主瓣窄,旁瓣大,频率识别精度最高,幅值识别精度最低;Flat-top 窗主瓣 宽,旁瓣小,频率识别精度最低,但幅值识别精度最高)

图5 TI官方的不同窗函数的频谱特性:
在这里插入图片描述

图6 不同应用使用的窗函数:
在这里插入图片描述

  • Processing loss(dB),也叫做相干功率增益,对一个信号进行加窗操作之后将会减少信号在时域上的幅值,尤其是在窗函数的左右边界,这种幅度的减小会引入幅度误差,每个窗函数的这种处理损失不太一样,TI已经列于下表之中,矩形窗不存在损失

  • Scalloping loss(dB),由于FFT变换的结果是离散的,那么信号的频率有可能会落在两个FFT bin之间,这样原本的功率就会被分散到两个bin上,从而相对于原先的功率就会产生损失,这就叫做栅栏损失

在这里插入图片描述
在这里插入图片描述

图7 不同窗函数使用的处理误差:
在这里插入图片描述

图8 不同窗函数的形状:
在这里插入图片描述

TIADC分析软件,内部已经对加窗处理损失进行修正。

大家可自行使用FFT分析软件分析一下非整周期采样使用各种窗口的结果,加深理解Highest side lobe level、Processing loss、Scalloping loss以及Half main lobe width。应用时域加窗技术会影响频谱分辨率

这篇关于揭开FFT时域加窗的奥秘的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1049286

相关文章

【Linux】探索进程优先级的奥秘,解锁进程的调度与切换

目录 进程优先级: 是什么? 为什么存在进程优先级的概念呢? Linux为什么调整优先级是要受限制的? PRI vs NICE Linux的调度与切换 概念准备: 那我们到底怎样完成进程的调度和切换呢? 区分:寄存器VS寄存器的内容 Linux实现进程调度的算法,需要考虑优先级,考虑进程饥饿问题,考虑效率问题。 解决优先级问题: 解决进程饥饿问题: 解决效率的问题:

时序预测|变分模态分解-双向时域卷积-双向门控单元-注意力机制多变量时间序列预测VMD-BiTCN-BiGRU-Attention

时序预测|变分模态分解-双向时域卷积-双向门控单元-注意力机制多变量时间序列预测VMD-BiTCN-BiGRU-Attention 文章目录 一、基本原理1. 变分模态分解(VMD)2. 双向时域卷积(BiTCN)3. 双向门控单元(BiGRU)4. 注意力机制(Attention)总结流程 二、实验结果三、核心代码四、代码获取五、总结 时序预测|变分模态分解-双向时域卷积

【DL--01】深度学习 揭开DL的神秘面纱

什么是深度学习 深度学习=深度神经网络+机器学习 人工智能 > 机器学习 > 表示学习 > 深度学习 神经元模型 输入信号、加权求和、加偏置、激活函数、输出 全连接层 输入信号、输入层、隐层(多个神经元)、输出层(多个输出,每个对应一个分类)、目标函数(交叉熵) 待求的参数:连接矩阵W、偏置b 训练方法:随机梯度下降,BP算法(后向传播) Python中深度学习实现:Ke

【机器学习】从零开始理解深度学习——揭开神经网络的神秘面纱

1. 引言 随着技术的飞速发展,人工智能(AI)已从学术研究的实验室走向现实应用的舞台,成为推动现代社会变革的核心动力之一。而在这一进程中,深度学习(Deep Learning)因其在大规模数据处理和复杂问题求解中的卓越表现,迅速崛起为人工智能的最前沿技术。深度学习的核心是神经网络,它模仿了生物神经系统的工作原理,通过层层叠加的结构化模型,逐步从数据中学习到有用的特征,从而完成分类、识别、生

【数字信号处理】一文讲清FFT(快速傅里叶变换)

目录 快速傅里叶变换(Fast Fourier Transform,FFT)FFT的背景快速傅里叶变换(Fast Fourier Transform,FFT)DFT的数学表达实际计算重要性和应用频谱泄露、频谱混叠奈奎斯特采样定理参考链接 快速傅里叶变换(Fast Fourier Transform,FFT) FFT的背景 1、为什么要时域→频域频率?50Hz+频率120Hz

【Linux】解锁系统编程奥秘,高效进程控制的实战技巧

进程控制 1. 进程创建1.1. 操作系统的工作内容1.2. fork常规用法1.3. fork调用失败的原因 2. 进程终止2.1. main函数的返回值2.1.1. 退出码2.1.2. 退出码转化为错误描述的方式 2.2. 普通函数的返回值2.2.1. 错误码 2.3. 进程退出的场景2.4. 进程退出的方式2.4.1. main函数的返回2.4.2. 调用exit()、_exit()函

【Python百日进阶-Web开发-音频】Day708 - 时域处理 librosa.lpc

文章目录 一、时域处理1.1 librosa.lpc1.1.1 语法与参数1.1.2 示例1.1.2.1 在整个系列上以 16 阶计算 y 的 LP 系数1.1.2.2 计算 LP 系数,并绘制原始序列的 LP 估计值 一、时域处理 1.1 librosa.lpc https://librosa.org/doc/latest/generated/librosa.lpc.h

【BNU】40719 Arithmetic Progressions【分块+FFT】

传送门:【BNU】40719 Arithmetic Progressions 题目分析: 用分块+FFT强行AC了这题…… 之前一直TLE……然后改了好久把姿势改的优美点了……终于过了…… 大概思路是:我们考虑分块,假设每一块的大小为S,一共分了B块然后我们分两种情况讨论: 1.第二个数在第i块,第一个数在(1~i-1)块内,第三个数在(i+1~B)块内。 2.至少两个数在同一块内。

【HDU】5197 DZY Loves Orzing 【FFT启发式合并】

传送门:【HDU】5197 DZY Loves Orzing 题目分析: 首先申明,我不会 dp dp方程= =……这个东西给队友找出来了,然后我就是套这个方程做题的Qrz…… 对于这题,因为 n2 n^2个数互不相同,所以每一列都可以单独考虑。设 dpni dp_ni表示长度为 n n的排列,能恰好看见ii个人的方案数,根据队友的发现, dpni dp_ni就等于 |sni| |s_ni|

【ZOJ】3874 Permutation Graph 【FFT+CDQ分治】

传送门:【ZOJ】3874 Permutation Graph 题目分析: 容易知道一个个连通块内部的标号都是连续的,否则一定会有另一个连通块向这个连通块建边,或者这个连通块向另一个连通块建边。而且从左到右左边的连通块内最大的标号小于右边连通块内最小的标号。 然后我们可以构造dp方程: dp[n]=n!−i!∗dp[n−i] \qquad \qquad dp[n] = n! - i! *