AI网络爬虫:批量爬取豆瓣图书搜索结果

2024-06-10 12:20

本文主要是介绍AI网络爬虫:批量爬取豆瓣图书搜索结果,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

工作任务:爬取豆瓣图书搜索结果页面的全部图书信息

在ChatGPT中输入提示词:

你是一个Python编程专家,要完成一个爬虫Python脚本编写的任务,具体步骤如下:

用 fake-useragent库设置随机的请求头;

设置chromedriver的路径为:"D:\Program Files\chromedriver125\chromedriver.exe"

隐藏chromedriver特征;

设置selenium的窗口最大化;

请求标头:

Accept:

text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.7

Accept-Encoding:

gzip, deflate, br, zstd

Accept-Language:

zh-CN,zh;q=0.9,en;q=0.8

Connection:

keep-alive

Host:

http://search.douban.com

Referer:

https://search.douban.com/book/subject_search?search_text=chatgpt&cat=1001&start=0

Sec-Ch-Ua:

"Google Chrome";v="125", "Chromium";v="125", "Not.A/Brand";v="24"

Sec-Ch-Ua-Mobile:

?0

Sec-Ch-Ua-Platform:

"Windows"

Sec-Fetch-Dest:

document

Sec-Fetch-Mode:

navigate

Sec-Fetch-Site:

same-origin

Sec-Fetch-User:

?1

Upgrade-Insecure-Requests:

1

User-Agent:

Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/125.0.0.0 Safari/537.36

用selenium打开网页:https://search.douban.com/book/subject_search?search_text=chatgpt&cat=1001&start={pagenumber}

{pagenumber}的值从0开始,以15递增,到285结束;

定位xpath=//*[@id="root"]/div/div[2]/div[1]/div[1]/div[{number}]/div/div/div[1]/a的div标签,提取其文本内容({number}的值是从1到15),写入Excel表格第1列;

定位xpath=//*[@id="root"]/div/div[2]/div[1]/div[1]/div[{number}]/div/div/div[3]的div 标签,提取其文本内容({number}的值是从1到15),写入Excel表格第2列;

保存Excel,Excel文件名为:doubanChatGPT20240606.xlsx, 保存到文件夹:F:\AI自媒体内容\AI行业数据分析

注意:

每一步都要输出信息到屏幕

每爬取1条数据,随机暂停5-8秒;

每爬取完1页数据,随机暂停6-12秒;

设置请求头,以应对网站的反爬虫机制;

有些标签的内容可能为空,导致处理时程序报错,遇到为空标签就直接跳过,继续处理下一个标签;

DataFrame.append 方法在 pandas 1.4.0 版本中已经被弃用,并且在后续版本中被移除。为了解决这个问题,我们可以使用 concat 函数来代替 append;

当前使用的是 Selenium 4 或更高版本,executable_path 参数已经被 service 参数替代了;

忽略 SSL 错误:在 Chrome 选项中添加了 --ignore-certificate-errors 和 --ignore-ssl-errors。

增加错误处理,确保尽量多地捕获和处理异常。

在每次请求前更新 User-Agent。

无头模式:使用 --headless 参数在无头模式下运行,以减少干扰。如果需要在前台运行,可以移除此行。

随机暂停:在请求之间随机暂停,以避免反爬虫机制。

源代码:

import time

import random

import pandas as pd

from fake_useragent import UserAgent

from selenium import webdriver

from selenium.webdriver.chrome.service import Service

from selenium.webdriver.common.by import By

from selenium.webdriver.chrome.options import Options

# 设置chromedriver的路径

chromedriver_path = "D:\\Program Files\\chromedriver125\\chromedriver.exe"

# 创建随机请求头

ua = UserAgent()

# 设置Chrome选项

chrome_options = Options()

chrome_options.add_argument("--start-maximized")

chrome_options.add_argument("--ignore-certificate-errors")

chrome_options.add_argument("--ignore-ssl-errors")

chrome_options.add_argument("--allow-insecure-localhost")

chrome_options.add_argument("--disable-web-security")

chrome_options.add_argument("--disable-site-isolation-trials")

chrome_options.add_argument("--disable-gpu")

chrome_options.add_argument("--no-sandbox")

chrome_options.add_argument("--disable-dev-shm-usage")

chrome_options.add_argument("--headless") # 无头模式运行

# 隐藏chromedriver特征

chrome_options.add_experimental_option('excludeSwitches', ['enable-automation'])

chrome_options.add_experimental_option('useAutomationExtension', False)

# 初始化webdriver

service = Service(chromedriver_path)

driver = webdriver.Chrome(service=service, options=chrome_options)

# 设置请求头

headers = {

"Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.7",

"Accept-Encoding": "gzip, deflate, br, zstd",

"Accept-Language": "zh-CN,zh;q=0.9,en;q=0.8",

"Connection": "keep-alive",

"Host": "http://search.douban.com",

"Referer": "https://search.douban.com/book/subject_search?search_text=chatgpt&cat=1001&start=0",

"Sec-Ch-Ua": '"Google Chrome";v="125", "Chromium";v="125", "Not.A/Brand";v="24"',

"Sec-Ch-Ua-Mobile": "?0",

"Sec-Ch-Ua-Platform": '"Windows"',

"Sec-Fetch-Dest": "document",

"Sec-Fetch-Mode": "navigate",

"Sec-Fetch-Site": "same-origin",

"Sec-Fetch-User": "?1",

"Upgrade-Insecure-Requests": "1",

"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/125.0.0.0 Safari/537.36"

}

# 数据存储列表

data = []

# 爬取网页数据

for pagenumber in range(0, 286, 15):

url = f"https://search.douban.com/book/subject_search?search_text=chatgpt&cat=1001&start={pagenumber}"

print(f"正在爬取页面: {url}")

# 更新 User-Agent

headers["User-Agent"] = ua.random

driver.execute_cdp_cmd('Network.setUserAgentOverride', {"userAgent": headers["User-Agent"]})

driver.get(url)

# 随机暂停以防止反爬

time.sleep(random.uniform(6, 12))

for number in range(1, 16):

try:

# 定位书名的div标签

try:

book_title_xpath = f'//*[@id="root"]/div/div[2]/div[1]/div[1]/div[{number}]/div/div/div[1]/a'

book_title = driver.find_element(By.XPATH, book_title_xpath).text

except Exception as e:

book_title = ""

print(f"无法找到书名,错误: {e}")

# 定位描述的div标签

try:

book_desc_xpath = f'//*[@id="root"]/div/div[2]/div[1]/div[1]/div[{number}]/div/div/div[3]'

book_desc = driver.find_element(By.XPATH, book_desc_xpath).text

except Exception as e:

book_desc = ""

print(f"无法找到描述,错误: {e}")

# 添加数据到列表

data.append([book_title, book_desc])

print(f"爬取到数据: {book_title}, {book_desc}")

# 随机暂停以防止反爬

time.sleep(random.uniform(5, 8))

except Exception as e:

print(f"跳过因错误: {e}")

continue

# 将数据写入Excel文件

columns = ["书名", "描述"]

df = pd.DataFrame(data, columns=columns)

output_path = "F:\\AI自媒体内容\\AI行业数据分析\\doubanChatGPT20240606.xlsx"

df.to_excel(output_path, index=False)

print(f"数据已保存到Excel文件:{output_path}")

driver.quit()

这篇关于AI网络爬虫:批量爬取豆瓣图书搜索结果的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1048149

相关文章

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

SpringBoot整合DeepSeek实现AI对话功能

《SpringBoot整合DeepSeek实现AI对话功能》本文介绍了如何在SpringBoot项目中整合DeepSeekAPI和本地私有化部署DeepSeekR1模型,通过SpringAI框架简化了... 目录Spring AI版本依赖整合DeepSeek API key整合本地化部署的DeepSeek

使用Python实现批量分割PDF文件

《使用Python实现批量分割PDF文件》这篇文章主要为大家详细介绍了如何使用Python进行批量分割PDF文件功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、架构设计二、代码实现三、批量分割PDF文件四、总结本文将介绍如何使用python进js行批量分割PDF文件的方法

PyCharm接入DeepSeek实现AI编程的操作流程

《PyCharm接入DeepSeek实现AI编程的操作流程》DeepSeek是一家专注于人工智能技术研发的公司,致力于开发高性能、低成本的AI模型,接下来,我们把DeepSeek接入到PyCharm中... 目录引言效果演示创建API key在PyCharm中下载Continue插件配置Continue引言

Ubuntu系统怎么安装Warp? 新一代AI 终端神器安装使用方法

《Ubuntu系统怎么安装Warp?新一代AI终端神器安装使用方法》Warp是一款使用Rust开发的现代化AI终端工具,该怎么再Ubuntu系统中安装使用呢?下面我们就来看看详细教程... Warp Terminal 是一款使用 Rust 开发的现代化「AI 终端」工具。最初它只支持 MACOS,但在 20

Python在固定文件夹批量创建固定后缀的文件(方法详解)

《Python在固定文件夹批量创建固定后缀的文件(方法详解)》文章讲述了如何使用Python批量创建后缀为.md的文件夹,生成100个,代码中需要修改的路径、前缀和后缀名,并提供了注意事项和代码示例,... 目录1. python需求的任务2. Python代码的实现3. 代码修改的位置4. 运行结果5.

使用Python实现批量访问URL并解析XML响应功能

《使用Python实现批量访问URL并解析XML响应功能》在现代Web开发和数据抓取中,批量访问URL并解析响应内容是一个常见的需求,本文将详细介绍如何使用Python实现批量访问URL并解析XML响... 目录引言1. 背景与需求2. 工具方法实现2.1 单URL访问与解析代码实现代码说明2.2 示例调用

SSID究竟是什么? WiFi网络名称及工作方式解析

《SSID究竟是什么?WiFi网络名称及工作方式解析》SID可以看作是无线网络的名称,类似于有线网络中的网络名称或者路由器的名称,在无线网络中,设备通过SSID来识别和连接到特定的无线网络... 当提到 Wi-Fi 网络时,就避不开「SSID」这个术语。简单来说,SSID 就是 Wi-Fi 网络的名称。比如

Java实现任务管理器性能网络监控数据的方法详解

《Java实现任务管理器性能网络监控数据的方法详解》在现代操作系统中,任务管理器是一个非常重要的工具,用于监控和管理计算机的运行状态,包括CPU使用率、内存占用等,对于开发者和系统管理员来说,了解这些... 目录引言一、背景知识二、准备工作1. Maven依赖2. Gradle依赖三、代码实现四、代码详解五