Python3和opencv的人脸识别并显示对应中文姓名完整版(含数据收集,模型训练)

本文主要是介绍Python3和opencv的人脸识别并显示对应中文姓名完整版(含数据收集,模型训练),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

如果你和我一样是个还没入门的python小白,有兴趣体验一下人脸识别。这里人脸识别代码很完整,也很简单,让我们一起试一试吧!

先上美图:

项目文件:

 

1、首先第三方包安装

# opencv 的安装
pip install opencv-python
# pillow的安装,注:pillow为图像处理包。
pip install pillow 
# contrib的安装,用于训练自己的人脸模型的一个OpenCV扩展包
pip instal opencv-contrib-python
# pyttsx3 文字转语音库使用
pip install pyttsx3

2、下载对应人脸识别xml文件并放到项目目录下(haarcascade/haarcascade_frontalface_default.xml):https://download.csdn.net/download/u011477914/12765468

3、创建人脸采集文件FaceDataCollect.py,并创建FaceData文件夹用于存放人脸数据,(注:运行过程中,会提示你输入请输入姓名序号,请从0开始输入,即第一个人的脸的数据为0,第二个人的脸的数据为1,运行一次可收集一张人脸的数据。)

# 采集人脸
import cv2# 调用笔记本内置摄像头,所以参数为0,如果有其他的摄像头可以调整参数为1,2
cap = cv2.VideoCapture(0)
# 加载人脸模型库
face_detector = cv2.CascadeClassifier('haarcascade/haarcascade_frontalface_default.xml')
face_id = input('\n 请输入姓名序号:')
print('\n 初始化面临捕获。看着镜头,等待 ...')
count = 0
# 获取摄像头实时画面
while True:# 读取摄像头当前这一帧的画面  success:True False image:当前这一帧画面success, img = cap.read()if not success:  # ok 是判断你有没有得到数据break# 转为灰度图片gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)# 检测人脸faces = face_detector.detectMultiScale(gray, 1.3, 5)if len(faces) > 0:for (x, y, w, h) in faces:# 画出矩形框cv2.rectangle(img, (x, y), (x+w, y+w), (255, 0, 0))count += 1# 保存图像cv2.imwrite("FaceData/User." + str(face_id) + '.' + str(count) + '.jpg', img[y: y + h, x: x + w])cv2.imshow('image', img)# 显示当前捕捉到了多少人脸图片了,这样站在那里被拍摄时心里有个数,不用两眼一抹黑傻等着font = cv2.FONT_HERSHEY_SIMPLEXcv2.putText(img, 'num:%d' % count, (x+w, y+w), font, 1, (255, 0, 255), 4)# 保持画面的持续。k = cv2.waitKey(5)if k == 27:   # 通过esc键退出摄像breakelif count >= 500:  # 得到500个样本后退出摄像break# 关闭摄像头
cap.release()
# 销毁窗口
cv2.destroyAllWindows()

4、创建人脸训练文件FaceTraining.py,并创建FaceTrainer文件夹用于存放训练数据文件

# 人脸数据训练
import numpy as np
from PIL import Image
import os
import cv2# 人脸数据路径
recognizer = cv2.face.LBPHFaceRecognizer_create()
detector = cv2.CascadeClassifier("haarcascade/haarcascade_frontalface_default.xml")def getImagesAndLabels(path):imagePaths = [os.path.join(path, f) for f in os.listdir(path)]  # join函数的作用?faceSamples = []ids = []for imagePath in imagePaths:PIL_img = Image.open(imagePath).convert('L')   # convert it to grayscaleimg_numpy = np.array(PIL_img, 'uint8')id = int(os.path.split(imagePath)[-1].split(".")[1])faces = detector.detectMultiScale(img_numpy)for (x, y, w, h) in faces:faceSamples.append(img_numpy[y:y + h, x: x + w])ids.append(id)return faceSamples, idsprint('Training faces. It will take a few seconds. Wait ...')
faces, ids = getImagesAndLabels('FaceData')
recognizer.train(faces, np.array(ids))recognizer.write(r'FaceTrainer\trainer.yml')
print("{0} faces trained. Exiting Program".format(len(np.unique(ids))))

5、创建人脸识别文件FaceRecognition.py(注:1. names中存储人的名字,若该人序号为0则他的名字在第一位,序号为1则排在第二位,以此类推。)

# 人脸识别
# coding=utf-8
import cv2
import numpy
from PIL import Image, ImageDraw, ImageFont
# 语音说话
import pyttsx3
engine = pyttsx3.init()# 解决cv2.putText绘制中文乱码
def cv2ImgAddText(img2, text, left, top, textColor=(0, 0, 255), textSize=20):if isinstance(img2, numpy.ndarray):  # 判断是否OpenCV图片类型img2 = Image.fromarray(cv2.cvtColor(img2, cv2.COLOR_BGR2RGB))# 创建一个可以在给定图像上绘图的对象draw = ImageDraw.Draw(img2)# 字体的格式fontStyle = ImageFont.truetype(r"C:\WINDOWS\FONTS\MSYH.TTC", textSize, encoding="utf-8")# 绘制文本draw.text((left, top), text, textColor, font=fontStyle)# 转换回OpenCV格式return cv2.cvtColor(numpy.asarray(img2), cv2.COLOR_RGB2BGR)recognizer = cv2.face.LBPHFaceRecognizer_create()
recognizer.read('FaceTrainer/trainer.yml')
cascadePath = "haarcascade/haarcascade_frontalface_default.xml"
faceCascade = cv2.CascadeClassifier(cascadePath)
font = cv2.FONT_HERSHEY_SIMPLEXnum = 0
names = ['尼古拉斯·赵四', '莱昂纳多·小沈阳', '约翰尼·宋小宝', '克里斯蒂安·刘能']
cam = cv2.VideoCapture(0)
minW = 0.1 * cam.get(3)
minH = 0.1 * cam.get(4)while True:ret, img = cam.read()gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)faces = faceCascade.detectMultiScale(gray,scaleFactor=1.2,minNeighbors=5,minSize=(int(minW), int(minH)))for (x, y, w, h) in faces:cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 2)num, confidence = recognizer.predict(gray[y:y + h, x:x + w])if confidence < 100:name = names[num]# confidence = "{0}%".format(round(100 - confidence))# confidence = format(round(100 - confidence))else:name = "unknown"# confidence = "{0}%".format(round(100 - confidence))# confidence = format(round(100 - confidence))# 解决cv2.putText绘制中文乱码img = cv2ImgAddText(img, name, x + 5, y - 30)# cv2.putText(img, name, (x + 5, y - 5), font, 1, (0, 0, 255), 1) 无法显示中文# cv2.putText(img, str(confidence.encode('utf-8')), (x+5, y+h-5), font, 1, (0, 0, 0), 1)if name == "unknown":engine.say('识别失败')engine.runAndWait()else:engine.say(name + '同学,你好')engine.runAndWait()cv2.imshow('camera', img)k = cv2.waitKey(5)if k == 27:breakcam.release()
cv2.destroyAllWindows()

 

人脸识别部分代码参考:https://www.cnblogs.com/xp12345/p/9818435.html

python 解决cv2.putText绘制中文乱码部分转自:https://blog.csdn.net/ctwy291314/article/details/91492048

这篇关于Python3和opencv的人脸识别并显示对应中文姓名完整版(含数据收集,模型训练)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1044854

相关文章

Python使用Pandas对比两列数据取最大值的五种方法

《Python使用Pandas对比两列数据取最大值的五种方法》本文主要介绍使用Pandas对比两列数据取最大值的五种方法,包括使用max方法、apply方法结合lambda函数、函数、clip方法、w... 目录引言一、使用max方法二、使用apply方法结合lambda函数三、使用np.maximum函数

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

Java下载文件中文文件名乱码的解决方案(文件名包含很多%)

《Java下载文件中文文件名乱码的解决方案(文件名包含很多%)》Java下载文件时,文件名中文乱码问题通常是由于编码不正确导致的,使用`URLEncoder.encode(filepath,UTF-8... 目录Java下载文件中文文件名乱码问题一般情况下,大家都是这样为了解决这个问题最终解决总结Java下

Redis的数据过期策略和数据淘汰策略

《Redis的数据过期策略和数据淘汰策略》本文主要介绍了Redis的数据过期策略和数据淘汰策略,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录一、数据过期策略1、惰性删除2、定期删除二、数据淘汰策略1、数据淘汰策略概念2、8种数据淘汰策略

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE

Python给Excel写入数据的四种方法小结

《Python给Excel写入数据的四种方法小结》本文主要介绍了Python给Excel写入数据的四种方法小结,包含openpyxl库、xlsxwriter库、pandas库和win32com库,具有... 目录1. 使用 openpyxl 库2. 使用 xlsxwriter 库3. 使用 pandas 库

SpringBoot定制JSON响应数据的实现

《SpringBoot定制JSON响应数据的实现》本文主要介绍了SpringBoot定制JSON响应数据的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们... 目录前言一、如何使用@jsonView这个注解?二、应用场景三、实战案例注解方式编程方式总结 前言

如何在本地部署 DeepSeek Janus Pro 文生图大模型

《如何在本地部署DeepSeekJanusPro文生图大模型》DeepSeekJanusPro模型在本地成功部署,支持图片理解和文生图功能,通过Gradio界面进行交互,展示了其强大的多模态处... 目录什么是 Janus Pro1. 安装 conda2. 创建 python 虚拟环境3. 克隆 janus